Skip to main content
Log in

Ca2+/nuclear factor of activated T cells signaling is enriched in early-onset rectal tumors devoid of canonical Wnt activation

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Our previous extensive analysis revealed a significant proportion of early-onset colorectal tumors from India to be localized to the rectum in younger individuals and devoid of deregulated Wnt/β-catenin signaling. In the current study, we performed a comprehensive genome-wide analysis of clinically well-annotated microsatellite stable early-onset sporadic rectal cancer (EOSRC) samples. Results revealed extensive DNA copy number alterations in rectal tumors in the absence of deregulated Wnt/β-catenin signaling. More importantly, transcriptome profiling revealed a (non-Wnt/β-catenin, non-MSI) genetic signature that could efficiently and specifically identify Wnt− rectal cancer. The genetic signature included a significant representation of genes belonging to Ca2+/NFAT signaling pathways that were validated in additional samples. The validated NFAT target genes exhibited significantly higher expression levels than canonical Wnt/β-catenin targets in Wnt− samples, an observation confirmed in other CRC expression data sets as well. We confirmed the validated genes to be transcriptionally regulated by NFATc1 by (a) evaluating their respective transcript levels and (b) performing promoter-luciferase and chromatin immunoprecipitation assays following ectopic expression as well as knockdown of NFATc1 in CRC cells. NFATc1 and its targets RUNX2 and GSN could drive increased migration in CRC cells. Finally, the validated genes were associated with poor survival in the cancer genome atlas CRC expression data set. This study is the first comprehensive molecular characterization of EOSRC that appears to be driven by noncanonical tumorigenesis pathways.

Key messages

  • Early-onset sporadic rectal cancer exhibits DNA gain and loss without Wnt activation.

  • Ca2+/NFAT signaling appears to be activated in the absence of Wnt activation.

  • An eight-gene genetic signature distinguishes Wnt+ and Wnt− rectal tumors.

  • NFAT and its target genes regulate tumorigenic properties in CRC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Polakis P (2007) The many ways of Wnt in cancer. Curr Opin Genet Dev 17:45–51

    Article  CAS  PubMed  Google Scholar 

  3. de la Chapelle A, Hampel H (2010) Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol 28:3380–3387

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shen L, Toyota M, Kondo Y, Lin E, Zhang L, Guo Y, Hernandez NS, Chen X, Ahmed S, Konishi K et al (2007) Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci U S A 104:18654–18659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ramnath T, Nandakumar A (2011) Estimating the burden of cancer. Natl Med J India 24:69–71

    CAS  PubMed  Google Scholar 

  6. Gupta S, Bhattacharya D, Acharya AN, Majumdar S, Ranjan P, Das S (2010) Colorectal carcinoma in young adults: a retrospective study on Indian patients: 2000–2008. Color Dis 12:e182–e189

    Article  CAS  Google Scholar 

  7. Heys SD, O'Hanrahan TJ, Brittenden J, Eremin O (1994) Colorectal cancer in young patients: a review of the literature. Eur J Surg Oncol 20:225–231

    CAS  PubMed  Google Scholar 

  8. Meza R, Jeon J, Renehan AG, Luebeck EG (2010) Colorectal cancer incidence trends in the United States and United kingdom: evidence of right- to left-sided biological gradients with implications for screening. Cancer Res 70:5419–5429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Birkenkamp-Demtroder K, Olesen SH, Sorensen FB, Laurberg S, Laiho P, Aaltonen LA, Orntoft TF (2005) Differential gene expression in colon cancer of the caecum versus the sigmoid and rectosigmoid. Gut 54:374–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. TCGA (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487: 330–337

  11. Frattini M, Balestra D, Suardi S, Oggionni M, Alberici P, Radice P, Costa A, Daidone MG, Leo E, Pilotti S et al (2004) Different genetic features associated with colon and rectal carcinogenesis. Clin Cancer Res 10:4015–4021

    Article  CAS  PubMed  Google Scholar 

  12. Lee YC, Lee YL, Chuang JP, Lee JC (2013) Differences in survival between colon and rectal cancer from SEER data. PLoS One 8:e78709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Slattery ML, Curtin K, Wolff RK, Boucher KM, Sweeney C, Edwards S, Caan BJ, Samowitz W (2009) A comparison of colon and rectal somatic DNA alterations. Dis Colon Rectum 52:1304–1311

    Article  PubMed  PubMed Central  Google Scholar 

  14. Raman MDBR (2013) Molecular origins of colon and rectal cancer: not a Wnt-Wnt situation. Curr Colorectal Cancer Rep 9:365–371

    Article  Google Scholar 

  15. Raman R, Kotapalli V, Adduri R, Gowrishankar S, Bashyam L, Chaudhary A, Vamsy M, Patnaik S, Srinivasulu M, Sastry R et al (2014) Evidence for possible non-canonical pathway(s) driven early-onset colorectal cancer in India. Mol Carcinog 53(Suppl 1):E181–E186

    Article  CAS  PubMed  Google Scholar 

  16. Kim YH, Pollack JR (2009) Comparative genomic hybridization on spotted oligonucleotide microarrays. Methods Mol Biol 556:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kwei KA, Bashyam MD, Kao J, Ratheesh R, Reddy EC, Kim YH, Montgomery K, Giacomini CP, Choi YL, Chatterjee S et al (2008) Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer. PLoS Genet 4:e1000081

    Article  PubMed  PubMed Central  Google Scholar 

  18. Raman R, Kongara R, Kotapalli V, Gowrishankar S, Sastry RA, Nagari B, Bashyam MD (2014) Pathological stage significantly predicts survival in colorectal cancer patients: a study from two tertiary care centers in India. Colorectal Cancer 3:265–275

    Article  Google Scholar 

  19. Verhaak RG, Tamayo P, Yang JY, Hubbard D, Zhang H, Creighton CJ, Fereday S, Lawrence M, Carter SL, Mermel CH et al (2013) Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest 123:517–525

    CAS  PubMed  Google Scholar 

  20. Dejmek J, Safholm A, Kamp Nielsen C, Andersson T, Leandersson K (2006) Wnt-5a/Ca2+-induced NFAT activity is counteracted by Wnt-5a/Yes-Cdc42-casein kinase 1alpha signaling in human mammary epithelial cells. Mol Cell Biol 26:6024–6036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, Vogelstein B, Clevers H (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275:1784–1787

    Article  CAS  PubMed  Google Scholar 

  22. Yiu GK, Kaunisto A, Chin YR, Toker A (2011) NFAT promotes carcinoma invasive migration through glypican-6. Biochem J 440:157–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Semenov MV, Habas R, Macdonald BT, He X (2007) SnapShot: noncanonical Wnt signaling pathways. Cell 131:1378

    Article  PubMed  Google Scholar 

  24. Basu M, Roy SS (2013) Wnt/beta-catenin pathway is regulated by PITX2 homeodomain protein and thus contributes to the proliferation of human ovarian adenocarcinoma cell, SKOV-3. J Biol Chem 288:4355–4367

    Article  CAS  PubMed  Google Scholar 

  25. Segditsas S, Tomlinson I (2006) Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25:7531–7537

    Article  CAS  PubMed  Google Scholar 

  26. Marisa L, de Reynies A, Duval A, Selves J, Gaub MP, Vescovo L, Etienne-Grimaldi MC, Schiappa R, Guenot D, Ayadi M et al (2013) Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med 10:e1001453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Sousa EMF, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, de Jong JH, de Boer OJ, van Leersum R, Bijlsma MF et al (2013) Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med 19:614–618

    Article  Google Scholar 

  28. Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, Wullschleger S, Ostos LC, Lannon WA, Grotzinger C, Del Rio M et al (2013) A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med 19:619–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Buchholz M, Schatz A, Wagner M, Michl P, Linhart T, Adler G, Gress TM, Ellenrieder V (2006) Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/calcineurin signaling pathway. EMBO J 25:3714–3724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hassin-Baer S, Laitman Y, Azizi E, Molchadski I, Galore-Haskel G, Barak F, Cohen OS, Friedman E (2009) The leucine rich repeat kinase 2 (LRRK2) G2019S substitution mutation. Association with Parkinson disease, malignant melanoma and prevalence in ethnic groups in Israel. J Neurol 256:483–487

    Article  CAS  PubMed  Google Scholar 

  31. Li XQ, Du X, Li DM, Kong PZ, Sun Y, Liu PF, Wang QS, Feng YM (2015) ITGBL1 is a Runx2 transcriptional target and promotes breast cancer bone metastasis by activating the TGFbeta signaling pathway. Cancer Res 75:3302–3313

    Article  CAS  PubMed  Google Scholar 

  32. Deng B, Fang J, Zhang X, Qu L, Cao Z, Wang B (2015) Role of gelsolin in cell proliferation and invasion of human hepatocellular carcinoma cells. Gene 571:292–297

    Article  CAS  PubMed  Google Scholar 

  33. Fromigue O, Hay E, Barbara A, Marie PJ (2010) Essential role of nuclear factor of activated T cells (NFAT)-mediated Wnt signaling in osteoblast differentiation induced by strontium ranelate. J Biol Chem 285:25251–25258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tripathi P, Wang Y, Coussens M, Manda KR, Casey AM, Lin C, Poyo E, Pfeifer JD, Basappa N, Bates CM et al (2014) Activation of NFAT signaling establishes a tumorigenic microenvironment through cell autonomous and non-cell autonomous mechanisms. Oncogene 33:1840–1849

    Article  CAS  PubMed  Google Scholar 

  35. Neal JW, Clipstone NA (2003) A constitutively active NFATc1 mutant induces a transformed phenotype in 3T3-L1 fibroblasts. J Biol Chem 278:17246–17254

    Article  CAS  PubMed  Google Scholar 

  36. Crabtree GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109(Suppl):S67–S79

    Article  CAS  PubMed  Google Scholar 

  37. Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R, Vijayakumar S, Economides AN, Aaronson SA (2010) Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev 24:2517–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vig M, Kinet JP (2009) Calcium signaling in immune cells. Nat Immunol 10:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sears CL, Garrett WS (2014) Microbes, microbiota, and colon cancer. Cell Host Microbe 15:317–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grivennikov SI (2013) Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol 35:229–244

    Article  CAS  PubMed  Google Scholar 

  41. Peuker K, Muff S, Wang J, Kunzel S, Bosse E, Zeissig Y, Luzzi G, Basic M, Strigli A, Ulbricht A et al (2016) Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nat Med 22:506–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gerlach K, Daniel C, Lehr HA, Nikolaev A, Gerlach T, Atreya R, Rose-John S, Neurath MF, Weigmann B (2012) Transcription factor NFATc2 controls the emergence of colon cancer associated with IL-6-dependent colitis. Cancer Res 72:4340–4350

    Article  CAS  PubMed  Google Scholar 

  43. Laskar RS, Talukdar FR, Mondal R, Kannan R, Ghosh SK (2014) High frequency of young age rectal cancer in a tertiary care centre of southern Assam, North East India. Indian J Med Res 139:314–318

    PubMed  PubMed Central  Google Scholar 

  44. Goh KL, Quek KF, Yeo GT, Hilmi IN, Lee CK, Hasnida N, Aznan M, Kwan KL, Ong KT (2005) Colorectal cancer in Asians: a demographic and anatomic survey in Malaysian patients undergoing colonoscopy. Aliment Pharmacol Ther 22:859–864

    Article  PubMed  Google Scholar 

  45. Bashyam MD, Kotapalli V, Raman R, Chaudhary AK, Yadav BK, Gowrishankar S, Uppin SG, Kongara R, Sastry RA, Vamsy M et al (2015) Evidence for presence of mismatch repair gene expression positive Lynch syndrome cases in India. Mol Carcinog 54:1807–1814

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and normal subjects for kindly agreeing to be a part of this study. We thank Dr. AS Raju, Research Associate, Laboratory of Molecular Oncology, CDFD for helping in microarray data analysis and for critical reading of the manuscript. The authors gratefully acknowledge the support from surgeons Dr. Mohana Vamsy, Dr. T Subramanyeshwar Rao, Dr. Sujit Patnaik, and Dr. KVVN Raju, Basavatarakam Indo-American Cancer Hospital and Research Institute, Hyderabad, India; Prof Mukta Srinivasulu, MNJ Institute of Oncology and Regional Cancer Centre, Hyderabad, India; and Dr. N Bheerappa, Nizam’s Institute of Medical Sciences, Hyderabad, India; and from pathologists Dr. I Satish Rao, Krishna Institute of Medical Sciences, Hyderabad, India; Dr. Sudha Murthy, Basavatarakam Indo-American Cancer Hospital and Research Institute, Hyderabad, India; and Dr. K T Vijaya, Care Hospitals, Hyderabad, India, for evaluating FFPE and IHC sections. We thank Ms. Leena Bashyam and Prof Aparna Dutta Gupta, Genomics Facility, School of Life Sciences, University of Hyderabad, Hyderabad, India, for providing access to the Agilent scanner.

Funding

This work was supported by an NIH-FIRCA grant (TW007963) to JP and MDB and two grants from the Department of Biotechnology, Government of India (BT/PR8609/MED/12/626/2013 and the National Bioscience Award project) to MDB. RK and RR, registered PhD students of Manipal University, are grateful to the Council of Scientific and Industrial Research, Government of India, for junior and senior research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murali D. Bashyam.

Ethics declarations

The study was performed as per the revised Helsinki declaration following approval of ethics committee of hospitals from where samples were collected as well as of the CDFD bioethics committee. Informed consent was obtained from patients.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1724 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Raman, R., Kotapalli, V. et al. Ca2+/nuclear factor of activated T cells signaling is enriched in early-onset rectal tumors devoid of canonical Wnt activation. J Mol Med 96, 135–146 (2018). https://doi.org/10.1007/s00109-017-1607-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1607-4

Keywords

Navigation