Skip to main content

Advertisement

Log in

Subchondral mesenchymal stem cells from osteoarthritic knees display high osteogenic differentiation capacity through microRNA-29a regulation of HDAC4

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Subchondral bone deterioration and osteophyte formation attributable to excessive mineralization are prominent features of end-stage knee osteoarthritis (OA). The cellular events underlying subchondral integrity diminishment remained elusive. This study was undertaken to characterize subchondral mesenchymal stem cells (SMSCs) isolated from patients with end-stage knee OA who required total knee arthroplasty. The SMSCs expressed surface antigens CD29, CD44, CD73, CD90, CD105, and CD166 and lacked CD31, CD45, and MHCII expression. The cell cultures exhibited higher proliferation and greater osteogenesis and chondrogenesis potencies, whereas their population-doubling time and adipogenic lineage commitment were lower than those of bone marrow MSCs (BMMSCs). They also displayed higher expressions of embryonic stem cell marker OCT3/4 and osteogenic factors Wnt3a, β-catenin, and microRNA-29a (miR-29a), concomitant with lower expressions of joint-deleterious factors HDAC4, TGF-β1, IL-1β, TNF-α, and MMP3, in comparison with those of BMMSCs. Knockdown of miR-29a lowered Wnt3a expression and osteogenic differentiation of the SMSCs through elevating HDAC4 translation, which directly regulated the 3′-untranslated region of HDAC4. Likewise, transgenic mice that overexpressed miR-29a in osteoblasts exhibited a high bone mass in the subchondral region. SMSCs in the transgenic mice showed a higher osteogenic differentiation and lower HDAC4 signaling than those in wild-type mice. Taken together, high osteogenesis potency existed in the SMSCs in the osteoarthritic knee. The miR-29a modulation of HDAC4 and Wnt3a signaling was attributable to the increase in osteogenesis. This study shed an emerging light on the characteristics of SMSCs and highlighted the contribution of SMSCs in the exacerbation of subchondral integrity in end-stage knee OA.

Key messages

  • Subchondral MSCs (SMSCs) from OA knee expressed embryonic stem cell marker Oct3/4.

  • The SMSCs showed high proliferation and osteogenic and chondrogenic potencies.

  • miR-29a regulated osteogenesis of the SMSCs through modulation of HDAC4 and Wnt3a.

  • A high osteogenic potency of the SMSCs existed in mice overexpressing miR-29a in bone.

  • Aberrant osteogenesis in SMSCs provides a new insight to subchondral damage in OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Glyn-Jones S, Palmer AJ, Agricola R, Price AJ, Vincent TL, Weinans H, Carr AJ (2015) Osteoarthritis. Lancet 386:376–387

    Article  CAS  PubMed  Google Scholar 

  2. Peat G, McCarney R, Croft P (2001) Knee pain and osteoarthritis in older adults: a review of community burden and current use of primary health care. Ann Rheum Dis 60:91–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roos EM, Arden NK (2015) Strategies for the prevention of knee osteoarthritis. Nat Rev Rheumatol 12:92–101

    Article  PubMed  Google Scholar 

  4. Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhu S, Dai J, Liu H, Cong X, Chen Y, Wu Y, Hu H, Heng BC, Ouyang HW, Zhou Y (2015) Down-regulation of Rac GTPase-activating protein OCRL1 causes aberrant activation of Rac1 in osteoarthritis development. Arthritis Rheumatol 67:2154–2163

    Article  CAS  PubMed  Google Scholar 

  6. Kaneko H, Ishijima M, Futami I, Tomikawa-Ichikawa N, Kosaki K, Sadatsuki R, Yamada Y, Kurosawa H, Kaneko K, Arikawa-Hirasawa E (2013) Synovial perlecan is required for osteophyte formation in knee osteoarthritis. Matrix Biol 32:178–187

    Article  CAS  PubMed  Google Scholar 

  7. Karsdal MA, Bay-Jensen AC, Lories RJ, Abramson S, Spector T, Pastoureau P, Christiansen C, Attur M, Henriksen K, Goldring SR et al (2014) The coupling of bone and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives and anabolics as potential treatments? Ann Rheum Dis 73:336–348

    Article  CAS  PubMed  Google Scholar 

  8. Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17:11–22

    Article  CAS  PubMed  Google Scholar 

  9. Ganguly P, El-Jawahari JJ, Giannoudis PV, Burska AN, Ponchel F, Jones EA (2017) Age related changes in bone marrow mesenchymal stromal cells: a potential impact on osteoporosis and osteoarthritis development. Cell Transplantation. https://doi.org/10.3727/096368917x694651

  10. Gomez-Aristizabal A, Sharma A, Bakooshli MA, Kapoor M, Gilbert PM, Viswanathan S, Gandhi R (2016) Stage-specific differences in secretory profile of mesenchymal stromal cells (MSCs) subjected to early- vs late-stage OA synovial fluid. Osteoarthr Cartil 25:737–741

    Article  PubMed  Google Scholar 

  11. Hagmann S, Rimmele C, Bucur F, Dreher T, Zeifang F, Moradi B, Gotterbarm T (2016) Mesenchymal stromal cells from osteoarthritic synovium are a distinct population compared to their bone-marrow counterparts regarding surface marker distribution and immunomodulation of allogeneic CD4+ T-cell cultures. Stem Cell Int 2016:6579463

    Google Scholar 

  12. Neri S, Guidotti S, Lilli NL, Cattini L, Mariani E (2017) Infrapatellar fat pad-derived mesenchymal stromal cells from osteoarthritis patients: in vitro genetic stability and replicative senescence. J Orthop Res 35:1029–1037

    Article  CAS  PubMed  Google Scholar 

  13. Xia Z, Ma P, Wu N, Su X, Chen J, Jiang C, Liu S, Chen W, Ma B, Yang X et al (2016) Altered function in cartilage derived mesenchymal stem cell leads to OA-related cartilage erosion. Am J Transl Res 8:433–446

    PubMed  PubMed Central  Google Scholar 

  14. Stiehler M, Rauh J, Bunger C, Jacobi A, Vater C, Schildberg T, Liebers C, Gunther KP, Bretschneider H (2016) In vitro characterization of bone marrow stromal cells from osteoarthritic donors. Stem Cell Res 16:782–789

    Article  CAS  PubMed  Google Scholar 

  15. Steinberg J, Zeggini E (2016) Functional genomics in osteoarthritis: past, present, and future. J Orthop Res 34:1105–1110

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vicente R, Noel D, Pers YM, Apparailly F, Jorgensen C (2016) Deregulation and therapeutic potential of microRNAs in arthritic diseases. Nat Rev Rheumatol 12:211–220

    Article  CAS  PubMed  Google Scholar 

  17. Roberto VP, Tiago DM, Silva IA, Cancela ML (2014) Mir-29a is an enhancer of mineral deposition in bone-derived systems. Arch Biochem Biophys 564:173–183

    Article  CAS  PubMed  Google Scholar 

  18. Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2009) Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 284:15676–15684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Le LT, Swingler TE, Crowe N, Vincent TL, Barter MJ, Donell ST, Delany AM, Dalmay T, Young DA, Clark IM (2016) The microRNA-29 family in cartilage homeostasis and osteoarthritis. J Mole Med 94:583–596

    Article  CAS  Google Scholar 

  20. Maurer B, Stanczyk J, Jungel A, Akhmetshina A, Trenkmann M, Brock M, Kowal-Bielecka O, Gay RE, Michel BA, Distler JH et al (2010) MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum 62:1733–1743

    Article  CAS  PubMed  Google Scholar 

  21. Ko JY, Chuang PC, Ke HJ, Chen YS, Sun YC, Wang FS (2015) MicroRNA-29a mitigates glucocorticoid induction of bone loss and fatty marrow by rescuing Runx2 acetylation. Bone 81:80–88

    Article  CAS  PubMed  Google Scholar 

  22. Wang FS, Chuang PC, Lin CL, Chen MW, Ke HJ, Chang YH, Chen YS, Wu SL, Ko JY (2013) MicroRNA-29a protects against glucocorticoid-induced bone loss and fragility in rats by orchestrating bone acquisition and resorption. Arthritis Rheum 65:1530–1540

    Article  CAS  PubMed  Google Scholar 

  23. Cheng CC, Lian WS, Hsiao FS, Liu IH, Lin SP, Lee YH, Chang CC, Xiao GY, Huang HY, Cheng CF et al (2012) Isolation and characterization of novel murine epiphysis derived mesenchymal stem cells. PLoS One 7:e36085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hügle T, Geurts J (2016) What drives osteoarthritis?—synovial versus subchondral bone pathology. Rheumatology. https://doi.org/10.1093/rheumatology/kew389

  25. Dieppe PA, Lohmander LS (2005) Pathogenesis and management of pain in osteoarthritis. Lancet 365:965–973

    Article  CAS  PubMed  Google Scholar 

  26. Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J et al (2013) Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 19:704–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blaney Davidson EN, Vitters EL, Bennink MB, van Lent PL, van Caam AP, Blom AB, van den Berg WB, van de Loo FA, van der Kraan PM (2015) Inducible chondrocyte-specific overexpression of BMP2 in young mice results in severe aggravation of osteophyte formation in experimental OA without altering cartilage damage. Ann Rheum Dis 74:1257–1264

    Article  CAS  PubMed  Google Scholar 

  28. Schelbergen RF, Geven EJ, van den Bosch MH, Eriksson H, Leanderson T, Vogl T, Roth J, van de Loo FA, Koenders MI, van der Kraan PM et al (2015) Prophylactic treatment with S100A9 inhibitor paquinimod reduces pathology in experimental collagenase-induced osteoarthritis. Ann Rheum Dis 74:2254–2258

    Article  CAS  PubMed  Google Scholar 

  29. Funck-Brentano T, Bouaziz W, Marty C, Geoffroy V, Hay E, Cohen-Solal M (2014) Dkk-1-mediated inhibition of Wnt signaling in bone ameliorates osteoarthritis in mice. Arthritis Rheumatol 66:3028–3039

    Article  CAS  PubMed  Google Scholar 

  30. Campbell TM, Churchman SM, Gomez A, McGonagle D, Conaghan PG, Ponchel F, Jones E (2016) Mesenchymal stem cell alterations in bone marrow lesions in patients with hip osteoarthritis. Arthritis Rheumatol 68:1648–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sharma L, Nevitt M, Hochberg M, Guermazi A, Roemer FW, Crema M, Eaton C, Jackson R, Kwoh K, Cauley J et al (2016) Clinical significance of worsening versus stable preradiographic MRI lesions in a cohort study of persons at higher risk for knee osteoarthritis. Ann Rheum Dis 75:1630–1636

    Article  PubMed  Google Scholar 

  32. Shabestari M, Vik J, Reseland JE, Eriksen EF (2016) Bone marrow lesions in hip osteoarthritis are characterized by increased bone turnover and enhanced angiogenesis. Osteoarthr Cartil 24:1745–1752

    Article  CAS  PubMed  Google Scholar 

  33. Alsalameh S, Amin R, Gemba T, Lotz M (2004) Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 50:1522–1532

    Article  PubMed  Google Scholar 

  34. Koelling S, Kruegel J, Irmer M, Path JR, Sadowski B, Miro X, Miosge N (2009) Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell 4:324–335

    Article  CAS  PubMed  Google Scholar 

  35. Jiang Y, Tuan RS (2015) Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat Rev Rheumatol 11:206–212

    Article  PubMed  Google Scholar 

  36. Vassilopoulos A, Chisholm C, Lahusen T, Zheng H, Deng CX (2014) A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer. Oncogene 33:5477–5482

    Article  CAS  PubMed  Google Scholar 

  37. Dominici M, Le Blanc K, Muller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E (2006) Minimal critical for defining multipotent mesenchymal stromal cells. Int Soc Cell Ther Posit Statement Cytotherapy 8:315–317

    CAS  Google Scholar 

  38. Pippenger BE, Duhr R, Muraro MG, Pagenstert GI, Hügle T, Geurts J (2015) Multicolor flow cytometry-based cellular phenotyping identifies osteoprogenitors and inflammatory cells in the osteoarthritic subchondral bone marrow compartment. Osteoarthr Cartil 23:1865–1869

    Article  CAS  PubMed  Google Scholar 

  39. Janeczek AA, Tare RS, Scarpa E, Moreno-Jimenez I, Rowland CA, Jenner D, Newman TA, Oreffo RO, Evans ND (2016) Transient canonical Wnt stimulation enriches human bone marrow mononuclear cell isolates for osteoprogenitors. Stem Cells 34:418–430

    Article  CAS  PubMed  Google Scholar 

  40. Esen E, Chen J, Karner CM, Okunade AL, Patterson BW, Long F (2013) WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab 17:745–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang M, Zheng C, Shou P, Li N, Cao G, Chen Q, Xu C, Du L, Yang Q, Cao J et al (2016) SHP1 regulates bone mass by directing mesenchymal stem cell differentiation. Cell Rep 17:2161

    Article  CAS  PubMed  Google Scholar 

  42. Seo E, Basu-Roy U, Gunaratne PH, Coarfa C, Lim DS, Basilico C, Mansukhani A (2013) SOX2 regulates YAP1 to maintain stemness and determine cell fate in the osteo-adipo lineage. Cell Rep 3:2075–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aref-Eshghi E, Liu M, Harper PE, Dore J, Martin G, Furey A, Green R, Rahman P, Zhai G (2015) Overexpression of MMP13 in human osteoarthritic cartilage is associated with the SMAD-independent TGF-beta signalling pathway. Arthritis Res Ther 17:264

  44. Jeffries MA, Donica M, Baker LW, Stevenson ME, Annan AC, Beth Humphrey M, James JA, Sawalha AH (2016) Genome-wide DNA methylation study identifies significant epigenomic changes in osteoarthritic subchondral bone and similarity to overlying cartilage. Arthritis Rheumatol 68:1403–1414

  45. Wen ZH, Tang CC, Chang YC, Huang SY, Lin YY, Hsieh SP, Lee HP, Lin SC, Chen WF, Jean YH (2016) Calcitonin attenuates cartilage degeneration and nociception in an experimental rat model of osteoarthritis: role of TGF-beta in chondrocytes. Sci Rep 6:28862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shim JH, Greenblatt MB, Zou W, Huang Z, Wein MN, Brady N, Hu D, Charron J, Broskin HR, Petsko GA, Zaller D, Zhai B, Gygi S, Glimcher LH, Jones DC (2013) Schnurri-3 regulates ERK downstream of Wnt signaling in osteoblasts. J Clin Invest 123:4010–4022 

  47. Lu J, Qu S, Yao B, Xu Y, Jin Y, Shi K, Shui Y, Pan S, Chen L, Ma C (2016) Osterix acetylation at K307 and K312 enhances its transcriptional activity and is required for osteoblast differentiation. Oncotarget 7:37471–37486

  48. Guerit D, Brondello JM, Chuchana P, Philipot D, Toupet K, Bony C, Jorgensen C, Noel D (2014) FOXO3A regulation by miRNA-29a controls chondrogenic differentiation of mesenchymal stem cells and cartilage formation. Stem Cell Dev 23:1195–1205 

  49. Du Y, Gao C, Liu Z, Wang L, Liu B, He F, Zhang T, Wang Y, Wang X, Xu M et al (2012) Upregulation of a disintegrin and metalloproteinase with thrombospondin motifs-7 by miR-29 repression mediates vascular smooth muscle calcification. Arteriosclerosis, Thromb Vascu Biol 32:2580–2588

  50. Panizo S, Naves-Diaz M, Carrillo-Lopez N, Martinez-Arias L, Fernandez-Martin JL, Ruiz-Torres MP, Cannata-Andia JB, Rodriguez I (2016) MicroRNAs 29b, 133b, and 211 regulate vascular smooth muscle calcification mediated by high phosphorus. J Am Soc Nephrol 27:824–834

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially supported by grants [MOST104-2314-B-182A-006-MY3] from the Ministry of Science & Technology, [NHRI-EX106-10436SI] from the National Health Research Institute, and [CMRPG8B0873; CMRPG8E0651-3; and CLRPG8B00421-3] from Chang Gung Memorial Hospital, Taiwan. We are grateful to Dr. Pei-Chin Chuang and Mr. Shun-Hung Tseng for providing the flow cytometry system and the Center for Laboratory Animals, Kaohisung Chang Gung Memorial Hospital, Taiwan, for the use of their facilities.

Grants [NHRI-EX106-10436SI] from the National Health Research Institute, [MOST103-2314-B-182A-053] from the Ministry of Science & Technology, and [CLRPG8B0043, CMRPG8E1321-3, and CMRPG8E0651-3] from Chang Gung Memorial Hospital, Taiwan

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jih-Yang Ko or Feng-Sheng Wang.

Ethics declarations

Experimental protocols were approved by the IRB of Chang Gung Memorial Hospital (no. 104-5248B and no. 106-2251C). Informed consent was obtained from all patients with end-stage knee OA who required total knee replacement. Experiments involving laboratory animals were approved by the IACUC of Kaohsiung Chang Gung Memorial Hospital (IACUC no. 2014120401).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Wei-Shiung Lian and Ren-Wen Wu contributed equally to this study.

Electronic supplementary material

ESM 1

(PDF 952 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, WS., Wu, RW., Lee, M.S. et al. Subchondral mesenchymal stem cells from osteoarthritic knees display high osteogenic differentiation capacity through microRNA-29a regulation of HDAC4. J Mol Med 95, 1327–1340 (2017). https://doi.org/10.1007/s00109-017-1583-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1583-8

Keywords

Navigation