Skip to main content

Advertisement

Log in

Contribution of redox-dependent activation of endothelial Nlrp3 inflammasomes to hyperglycemia-induced endothelial dysfunction

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Recent studies indicate that inflammasomes serve as intracellular machinery to initiate classical cytokine-mediated inflammatory responses and play a crucial role in the pathogenesis of cardiovascular diseases. However, whether or not the activation of endothelial inflammasomes directly causes cell dysfunction or tissue injury without recruitment of inflammatory cells is unknown. We explored the role of endothelial cell inflammasome activation in mediating tight junction disruption, a hallmark event of endothelial barrier dysfunction leading to endothelial hyperpermeability in diabetes. We used confocal microscopy to study the formation and activation of NOD-like receptor family pyrin domain containing-3 (Nlrp3) inflammasomes and expression of tight junction proteins in coronary arteries of streptozotocin-treated diabetic wild type and Nlrp3 gene-deleted mice. We found that Nlrp3 ablation prevented inflammasome activation and tight junction disassembly in the coronary arterial endothelium of diabetic mice. Similarly, Nlrp3 gene silencing prevented high glucose-induced down-regulation of tight junction proteins in cultured mouse vascular endothelial cells (MVECs). The high glucose-induced tight junction disruption and consequent endothelial permeability were attributed to increased release of the high mobility group box protein-1 (HMGB1), which is dependent on enhanced Nlrp3 inflammasome activity. Mechanistically, reducing reactive oxygen species (ROS) production abolished high glucose-induced inflammasome activation, tight junction disruption, and endothelial hyperpermeability in MVECs. Collectively, the ROS-dependent activation of endothelial Nlrp3 inflammasomes by hyperglycemia may be an important initiating mechanism to cause endothelial dysfunction. These effects could contribute to the early onset of endothelial injury in diabetes.

Key message

  • Endothelial tight junction disruption in diabetes requires Nlrp3 inflammasomes.

  • High glucose activates Nlrp3 inflammasome in endothelial cells via ROS production.

  • Activation of endothelial inflammasome by high glucose triggers release of HMGB1.

  • Blockade of Nlrp3/HMGB1 axis inhibits high glucose-induced endothelial permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Reference

  1. Chen Y, Li X, Boini KM, Pitzer AL, Gulbins E, Zhang Y, Li PL (2015) Endothelial Nlrp3 inflammasome activation associated with lysosomal destabilization during coronary arteritis. Biochim Biophys Acta 1853:396–408

    Article  CAS  PubMed  Google Scholar 

  2. Nagyoszi P, Nyul-Toth A, Fazakas C, Wilhelm I, Kozma M, Molnar J, Hasko J, Krizbai IA (2015) Regulation of NOD-like receptors and inflammasome activation in cerebral endothelial cells. J Neurochem. doi:10.1111/jnc.13197

    PubMed  Google Scholar 

  3. Yin Y, Pastrana JL, Li X, Huang X, Mallilankaraman K, Choi ET, Madesh M, Wang H, Yang XF (2013) Inflammasomes: sensors of metabolic stresses for vascular inflammation. Front Biosci (Landmark Ed) 18:638–649

    Article  CAS  Google Scholar 

  4. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nunez G, Schnurr M et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C, Zhang M, Zhang Y, An F (2014) NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One 9:e104771

    Article  PubMed  PubMed Central  Google Scholar 

  6. Huang W, Liu Y, Li L, Zhang R, Liu W, Wu J, Mao E, Tang Y (2012) HMGB1 increases permeability of the endothelial cell monolayer via RAGE and Src family tyrosine kinase pathways. Inflammation 35:350–362

    Article  CAS  PubMed  Google Scholar 

  7. dos Santos G, Rogel MR, Baker MA, Troken JR, Urich D, Morales-Nebreda L, Sennello JA, Kutuzov MA, Sitikov A, Davis JM et al (2015) Vimentin regulates activation of the NLRP3 inflammasome. Nat Commun 6:6574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Strowig T, Henao-Mejia J, Elinav E, Flavell R (2012) Inflammasomes in health and disease. Nature 481:278–286

    Article  CAS  PubMed  Google Scholar 

  9. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411

    Article  CAS  PubMed  Google Scholar 

  10. Wen H, Ting JP, O'Neill LA (2012) A role for the NLRP3 inflammasome in metabolic diseases—did Warburg miss inflammation? Nat Immunol 13:352–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832

    Article  CAS  PubMed  Google Scholar 

  12. Weber A, Wasiliew P, Kracht M (2010) Interleukin-1beta (IL-1beta) processing pathway. Sci Signal 3:cm2

    PubMed  Google Scholar 

  13. Misawa T, Takahama M, Kozaki T, Lee H, Zou J, Saitoh T, Akira S (2013) Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol 14:454–460

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Zhang Y, Xia M, Gulbins E, Boini KM, Li PL (2014) Activation of Nlrp3 inflammasomes enhances macrophage lipid-deposition and migration: implication of a novel role of inflammasome in atherogenesis. PLoS One 9:e87552

    Article  PubMed  PubMed Central  Google Scholar 

  15. Keller M, Ruegg A, Werner S, Beer HD (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132:818–831

    Article  CAS  PubMed  Google Scholar 

  16. Shao W, Yeretssian G, Doiron K, Hussain SN, Saleh M (2007) The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem 282:36321–36329

    Article  CAS  PubMed  Google Scholar 

  17. Potenza MA, Gagliardi S, Nacci C, Carratu MR, Montagnani M (2009) Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr Med Chem 16:94–112

    Article  CAS  PubMed  Google Scholar 

  18. Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115:1285–1295

    PubMed  Google Scholar 

  19. Davignon J, Ganz P (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109:III27–III32

    Article  PubMed  Google Scholar 

  20. Cade WT (2008) Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther 88:1322–1335

    Article  PubMed  PubMed Central  Google Scholar 

  21. Finucane OM, Lyons CL, Murphy AM, Reynolds CM, Klinger R, Healy NP, Cooke AA, Coll RC, McAllan L, Nilaweera KN et al (2015) Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1beta secretion and insulin resistance despite obesity. Diabetes 64:2116–2128

    Article  CAS  PubMed  Google Scholar 

  22. Yu T, Jhun BS, Yoon Y (2011) High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxid Redox Signal 14:425–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mattson MP, Zhu H, Yu J, Kindy MS (2000) Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: involvement of perturbed calcium homeostasis. J Neurosci 20:1358–1364

    CAS  PubMed  Google Scholar 

  24. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52:313–320

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Xu M, Xia M, Li X, Boini KM, Wang M, Gulbins E, Ratz PH, Li PL (2014) Defective autophagosome trafficking contributes to impaired autophagic flux in coronary arterial myocytes lacking CD38 gene. Cardiovasc Res 102:68–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei YM, Li X, Xu M, Abais JM, Chen Y, Riebling CR, Boini KM, Li PL, Zhang Y (2013) Enhancement of autophagy by simvastatin through inhibition of Rac1-mTOR signaling pathway in coronary arterial myocytes. Cell Physiol Biochem 31:925–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang AY, Yi F, Jin S, Xia M, Chen QZ, Gulbins E, Li PL (2007) Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells. Antioxid Redox Signal 9:817–828

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Li X, Pitzer AL, Chen Y, Wang L, Li PL (2015) Coronary endothelial dysfunction induced by nucleotide oligomerization domain-like receptor protein with pyrin domain containing 3 inflammasome activation during hypercholesterolemia: beyond inflammation. Antioxid Redox Signal 22:1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901

    Article  CAS  PubMed  Google Scholar 

  30. Yuan SY, Rigor RR (2010) Regulation of Endothelial Barrier Function, Morgan & Claypool Life Sciences, San Rafael (CA)

  31. Hadi HA, Suwaidi JA (2007) Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag 3:853–876

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hadi HA, Carr CS, Al Suwaidi J (2005) Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag 1:183–198

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Funk SD, Yurdagul A Jr, Orr AW (2012) Hyperglycemia and endothelial dysfunction in atherosclerosis: lessons from type 1 diabetes. Int J Vasc Med 2012:569654

    PubMed  PubMed Central  Google Scholar 

  34. Fiorentino TV, Prioletta A, Zuo P, Folli F (2013) Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des 19:5695–5703

    Article  CAS  PubMed  Google Scholar 

  35. Nacci C, Tarquinio M, Montagnani M (2009) Molecular and clinical aspects of endothelial dysfunction in diabetes. Intern Emerg Med 4:107–116

    Article  PubMed  Google Scholar 

  36. Geraldes P, King GL (2010) Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 106:1319–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xia M, Boini KM, Abais JM, Xu M, Zhang Y, Li PL (2014) Endothelial NLRP3 inflammasome activation and enhanced neointima formation in mice by adipokine visfatin. Am J Pathol 184:1617–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86:279–367

    Article  CAS  PubMed  Google Scholar 

  40. Wallez Y, Huber P (2008) Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta 1778:794–809

    Article  CAS  PubMed  Google Scholar 

  41. Giannotta M, Trani M, Dejana E (2013) VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev Cell 26:441–454

    Article  CAS  PubMed  Google Scholar 

  42. Zhuang Y, Hu C, Ding G, Zhang Y, Huang S, Jia Z, Zhang A (2015) Albumin impairs renal tubular tight junctions via targeting the NLRP3 inflammasome. Am J Physiol Renal Physiol 308:F1012–F1019

    Article  CAS  PubMed  Google Scholar 

  43. Shahzad K, Bock F, Dong W, Wang H, Kopf S, Kohli S, Al-Dabet MM, Ranjan S, Wolter J, Wacker C et al (2015) Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int 87:74–84

    Article  CAS  PubMed  Google Scholar 

  44. Shi H, Zhang Z, Wang X, Li R, Hou W, Bi W, Zhang X (2015) Inhibition of autophagy induces IL-1beta release from ARPE-19 cells via ROS mediated NLRP3 inflammasome activation under high glucose stress. Biochem Biophys Res Commun 463:1071–1076

    Article  CAS  PubMed  Google Scholar 

  45. Zhou J, Li YS, Chien S (2014) Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler Thromb Vasc Biol 34:2191–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gombault A, Baron L, Couillin I (2012) ATP release and purinergic signaling in NLRP3 inflammasome activation. Front Immunol 3:414

    PubMed  Google Scholar 

  47. Zu Y, Wan LJ, Cui SY, Gong YP, Li CL (2015) The mitochondrial Na(+)/Ca(2+) exchanger may reduce high glucose-induced oxidative stress and nucleotide-binding oligomerization domain receptor 3 inflammasome activation in endothelial cells. J Geriatr Cardiol 12:270–278

    PubMed  PubMed Central  Google Scholar 

  48. Lu B, Nakamura T, Inouye K, Li J, Tang Y, Lundback P, Valdes-Ferrer SI, Olofsson PS, Kalb T, Roth J et al (2012) Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488:670–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Keyel PA (2014) How is inflammation initiated? Individual influences of IL-1, IL-18 and HMGB1. Cytokine 69:136–145

    Article  CAS  PubMed  Google Scholar 

  50. Sappington PL, Yang R, Yang H, Tracey KJ, Delude RL, Fink MP (2002) HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology 123:790–802

    Article  CAS  PubMed  Google Scholar 

  51. Wolfson RK, Chiang ET, Garcia JG (2011) HMGB1 induces human lung endothelial cell cytoskeletal rearrangement and barrier disruption. Microvasc Res 81:189–197

    Article  CAS  PubMed  Google Scholar 

  52. Yao D, Brownlee M (2010) Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 59:249–255

    Article  CAS  PubMed  Google Scholar 

  53. Abais JM, Xia M, Zhang Y, Boini KM, Li PL (2015) Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal 22:1111–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Teshima Y, Takahashi N, Nishio S, Saito S, Kondo H, Fukui A, Aoki K, Yufu K, Nakagawa M, Saikawa T (2014) Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circ J 78:300–306

    Article  CAS  PubMed  Google Scholar 

  55. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    Article  CAS  PubMed  Google Scholar 

  56. Feng H, Gu J, Gou F, Huang W, Gao C, Chen G, Long Y, Zhou X, Yang M, Liu S et al (2016) High glucose and lipopolysaccharide prime NLRP3 inflammasome via ROS/TXNIP pathway in mesangial cells. J Diabetes Res 2016:6973175

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ramesh G, MacLean AG, Philipp MT (2013) Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediat Inflamm 2013:480739

    Google Scholar 

  58. Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI, van der Pol S, Weksler BB, Romero IA, Couraud PO, Piontek J et al (2007) Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J 21:3666–3676

    Article  CAS  PubMed  Google Scholar 

  59. Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH (2002) Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes 51:1166–1171

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Institutes of Health (HL057244, HL122769 and HL122937) and the National Natural Science Foundation of China (NO.81603587).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, L., Pitzer, A.L. et al. Contribution of redox-dependent activation of endothelial Nlrp3 inflammasomes to hyperglycemia-induced endothelial dysfunction. J Mol Med 94, 1335–1347 (2016). https://doi.org/10.1007/s00109-016-1481-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1481-5

Keywords

Navigation