Skip to main content
Log in

The R130S mutation significantly affects the function of prestin, the outer hair cell motor protein

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

A missense mutation, R130S, was recently found in the prestin gene, SLC26A5, of patients with moderate to severe hearing loss (DFNB61). In order to define the pathology of hearing loss associated with this missense mutation, a recombinant prestin construct harboring the R130S mutation (R130S-prestin) was generated, and its functional consequences examined in a heterologous expression system. We found that R130S-prestin targets the plasma membrane but less efficiently compared to wild-type. The voltage operating point and voltage sensitivity of the motor function of R130S-prestin were similar to wild-type prestin. However, the motor activity of R130S-prestin is greatly reduced at higher voltage stimulus frequencies, indicating a reduction in motor kinetics. Our study thus provides experimental evidence that supports a causal relationship between the R130S mutation in the prestin gene and hearing loss found in patients with this missense mutation.

Key message

  • Membrane targeting of prestin is impaired by the R130S missense mutation.

  • The fast motor kinetics of prestin is impaired by the R130S missense mutation.

  • Our study strongly suggests that the prestin R130S missense mutation is pathogenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

OHC:

Outer hair cell

NLC:

Nonlinear capacitance

wt:

Wild type

KO:

Knockout

ECFP:

Enhanced cyan fluorescent protein

References

  1. Alper SL, Sharma AK (2013) The SLC26 gene family of anion transporters and channels. Mol Aspects Med 34:494–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155

    Article  CAS  PubMed  Google Scholar 

  3. Liberman M, Gao J, He D, Wu X, Jia S, Zuo J (2002) Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419:300–304

    Article  CAS  PubMed  Google Scholar 

  4. Cheatham MA, Huynh KH, Gao J, Zuo J, Dallos P (2004) Cochlear function in Prestin knockout mice. J Physiol (Lond) 560:821–830

    Article  CAS  Google Scholar 

  5. Wu X, Gao J, Guo Y, Zuo J (2004) Hearing threshold elevation precedes hair-cell loss in prestin knockout mice. Brain Res Mol Brain Res 126:30–37

    Article  CAS  PubMed  Google Scholar 

  6. Cheatham MA, Zheng J, Huynh KH, Du GG, Edge RM, Anderson CT, Zuo J, Ryan AF, Dallos P (2007) Evaluation of an independent prestin mouse model derived from the 129S1 strain. Audiol Neurootol 12:378–390

    Article  CAS  PubMed  Google Scholar 

  7. Dallos P, Wu X, Cheatham MA, Gao J, Zheng J, Anderson CT, Jia S, Wang X, Cheng WHY, Sengupta S et al (2008) Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 58:333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu XZ, Ouyang XM, Xia XJ, Zheng J, Pandya A, Li F, Du LL, Welch KO, Petit C, Smith RJ et al (2003) Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Hum Mol Genet 12:1155–1162

    Article  CAS  PubMed  Google Scholar 

  9. Tang HY, Xia A, Oghalai JS, Pereira FA, Alford RL (2005) High frequency of the IVS2-2A>G DNA sequence variation in SLC26A5, encoding the cochlear motor protein prestin, precludes its involvement in hereditary hearing loss. BMC Med Genet 6:30

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shearer AE, Eppsteiner RW, Booth KT, Ephraim SS, Gurrola J 2nd, Simpson A, Black-Ziegelbein EA, Joshi S, Ravi H, Giuffre AC et al (2014) Utilizing ethnic-specific differences in minor allele frequency to recategorize reported pathogenic deafness variants. Am J Hum Genet 95:445–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mutai H, Suzuki N, Shimizu A, Torii C, Namba K, Morimoto N, Kudoh J, Kaga K, Kosaki K, Matsunaga T (2013) Diverse spectrum of rare deafness genes underlies early-childhood hearing loss in Japanese patients: a cross-sectional, multi-center next-generation sequencing study. Orphanet J Rare Dis 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fatscher T, Boehm V, Gehring NH (2015) Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cell Mol Life Sci. doi:10.1007/s00018-00015-02017-00019

    PubMed  Google Scholar 

  13. Gorbunov D, Sturlese M, Nies F, Kluge M, Bellanda M, Battistutta R, Oliver D (2014) Molecular architecture and the structural basis for anion interaction in prestin and SLC26 transporters. Nat Commun 5:3622. doi:10.1038/ncomms4622

  14. Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  PubMed  Google Scholar 

  15. Geertsma ER, Chang Y-N, Shaik FR, Neldner Y, Pardon E, Steyaert J, Dutzler R (2015) Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol 22:803–808

    Article  CAS  PubMed  Google Scholar 

  16. Homma K, Miller KK, Anderson CT, Sengupta S, Du GG, Aguiñaga S, Cheatham M, Dallos P, Zheng J (2010) Interaction between CFTR and prestin (SLC26A5). Biochim Biophys Acta 1798:1029–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Santos-Sacchi J, Kakehata S, Takahashi S (1998) Effects of membrane potential on the voltage dependence of motility-related charge in outer hair cells of the guinea-pig. J Physiol (Lond) 510(Pt 1):225–235

    Article  CAS  Google Scholar 

  19. Homma K, Duan C, Zheng J, Cheatham MA, Dallos P (2013) The V499G/Y501H mutation impairs fast motor kinetics of prestin and has significance for defining functional independence of individual prestin subunits. J Biol Chem 288:2452–2463

    Article  CAS  PubMed  Google Scholar 

  20. Homma K, Dallos P (2011) Evidence that prestin has at least two voltage-dependent steps. J Biol Chem 286:2297–2307

    Article  CAS  PubMed  Google Scholar 

  21. Keller JP, Homma K, Duan C, Zheng J, Cheatham MA, Dallos P (2014) Functional regulation of the slc26-family protein prestin by calcium/calmodulin. J Neurosci 34:1325–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pasqualetto E, Aiello R, Gesiot L, Bonetto G, Bellanda M, Battistutta R (2010) Structure of the cytosolic portion of the motor protein prestin and functional role of the STAS domain in SLC26/SulP anion transporters. J Mol Biol 400:448–462

    Article  CAS  PubMed  Google Scholar 

  23. Pinedal T, Bonafè A, Superti-Furga A (2013) Report of a novel mutation in the SLC26A2 gene found in a Colombian adult patient with diastrophic dysplasia. Rev Fac Med 61:255–259

    Google Scholar 

  24. Wedenoja S, Pekansaari E, Höglund P, Mäkelä S, Holmberg C, Kere J (2011) Update on SLC26A3 mutations in congenital chloride diarrhea. Hum Mutat 32:715–722

    Article  CAS  PubMed  Google Scholar 

  25. Chai Y, Huang Z, Tao Z, Li X, Li L, Li Y, Wu H, Yang T (2013) Molecular etiology of hearing impairment associated with nonsyndromic enlarged vestibular aqueduct in East China. Am J Med Genet A 161:2226–2233

    Article  CAS  Google Scholar 

  26. López-Bigas N, Melchionda S, de Cid R, Grifa A, Zelante L, Govea N, Arbonés ML, Gasparini P, Estivill X (2001) Identification of five new mutations of PDS/SLC26A4 in Mediterranean families with hearing impairment. Hum Mutat 18:548

    Article  PubMed  Google Scholar 

  27. Fugazzola L, Cerutti N, Mannavola D, Crino A, Cassio A, Gasparoni P, Vannucchi G, Beck-Peccoz P (2002) Differential diagnosis between Pendred and pseudo-Pendred syndromes: clinical, radiologic, and molecular studies. Pediatr Res 51:479–484

    Article  CAS  PubMed  Google Scholar 

  28. Reyes S, Wang G, Ouyang X, Han B, Du LL, Yuan HJ, Yan D, Dai P, Liu XZ (2009) Mutation analysis of SLC26A4 in mainland Chinese patients with enlarged vestibular aqueduct. Otolaryngol Head Neck Surg 141:502–508

    Article  PubMed  PubMed Central  Google Scholar 

  29. Blons H, Feldmann D, Duval V, Messaz O, Denoyelle F, Loundon N, Sergout-Allaoui A, Houang M, Duriez F, Lacombe D et al (2004) Screening of SLC26A4 (PDS) gene in Pendred's syndrome: a large spectrum of mutations in France and phenotypic heterogeneity. Clin Genet 66:333–340

    Article  CAS  PubMed  Google Scholar 

  30. Van Hauwe P, Everett LA, Coucke P, Scott DA, Kraft ML, Ris-Stalpers C, Bolder C, Otten B, de Vijlder JJ, Dietrich NL et al (1998) Two frequent missense mutations in Pendred syndrome. Hum Mol Genet 7:1099–1104

    Article  PubMed  Google Scholar 

  31. Anwar S, Riazuddin S, Ahmed ZM, Tasneem S, Ateeq-ul-Jaleel KSY, Griffith AJ, Friedman TB, Riazuddin S (2009) SLC26A4 mutation spectrum associated with DFNB4 deafness and Pendred's syndrome in Pakistanis. J Hum Genet 54:266–270

    Article  CAS  PubMed  Google Scholar 

  32. Pera A, Villamar M, Viñuela A, Gandía M, Medà C, Moreno F, Hernández-Chico C (2008) A mutational analysis of the SLC26A4 gene in Spanish hearing-impaired families provides new insights into the genetic causes of Pendred syndrome and DFNB4 hearing loss. Eur J Hum Genet 16:888–896

    Article  CAS  PubMed  Google Scholar 

  33. Chen K, Zong L, Liu M, Wang X, Zhou W, Zhan Y, Cao H, Dong C, Tang H, Jiang H (2014) Developing regional genetic counseling for southern Chinese with nonsyndromic hearing impairment: a unique mutational spectrum. J Transl Med 12:64

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen K, Wang X, Sun L, Jiang H (2012) Screening of SLC26A4, FOXI1, KCNJ10, and GJB2 in bilateral deafness patients with inner ear malformation. Otolaryngol Head Neck Surg 146:972–978

    Article  PubMed  Google Scholar 

  35. Kumano S, Iida K, Ishihara K, Murakoshi M, Tsumoto K, Ikeda K, Kumagai I, Kobayashi T, Wada H (2010) Salicylate-induced translocation of prestin having mutation in the GTSRH sequence to the plasma membrane. FEBS Lett 584:2327–2332

    Article  CAS  PubMed  Google Scholar 

  36. Ashmore JF (1990) Forward and reverse transduction in the mammalian cochlea. Neurosci Res Suppl 12:S39–S50

    Article  CAS  PubMed  Google Scholar 

  37. Santos-Sacchi J (1991) Reversible inhibition of voltage-dependent outer hair cell motility and capacitance. J Neurosci 11:3096–3110

    CAS  PubMed  Google Scholar 

  38. Albert JT, Winter H, Schaechinger TJ, Weber T, Wang X, He DZZ, Hendrich O, Geisler H-S, Zimmermann U, Oelmann K et al (2007) Voltage-sensitive prestin orthologue expressed in zebrafish hair cells. J Physiol (Lond) 580:451–461

    Article  CAS  Google Scholar 

  39. Schaechinger TJ, Gorbunov D, Halaszovich CR, Moser T, Kügler S, Fakler B, Oliver D (2011) A synthetic prestin reveals protein domains and molecular operation of outer hair cell piezoelectricity. Embo J 30:2793–2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mistrík P, Daudet N, Morandell K, Ashmore JF (2012) Mammalian prestin is a weak Cl/HCO3 electrogenic antiporter. J Physiol (Lond) 590:5597–5610

    Article  Google Scholar 

  41. Schänzler M, Fahlke C (2012) Anion transport by the cochlear motor protein prestin. J Physiol (Lond) 590:259–272

    Article  Google Scholar 

  42. Zheng J, Du G-G, Anderson CT, Keller JP, Orem A, Dallos P, Cheatham M (2006) Analysis of the oligomeric structure of the motor protein prestin. J Biol Chem 281:19916–19924

    Article  CAS  PubMed  Google Scholar 

  43. Hallworth R, Nichols MG (2012) Prestin in HEK cells is an obligate tetramer. J Neurophysiol 107:5–11

    Article  CAS  PubMed  Google Scholar 

  44. Mio K, Kubo Y, Ogura T, Yamamoto T, Arisaka F, Sato C (2008) The motor protein prestin is a bullet-shaped molecule with inner cavities. J Biol Chem 283:1137–1145

    Article  CAS  PubMed  Google Scholar 

  45. Navaratnam D, Bai J, Samaranayake H, Santos-Sacchi J (2005) N-terminal-mediated homomultimerization of prestin, the outer hair cell motor protein. Biophys J 89:3345–3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheatham MA, Zheng J, Huynh KH, Du GG, Gao J, Zuo J, Navarrete E, Dallos P (2005) Cochlear function in mice with only one copy of the prestin gene. J Physiol (Lond) 569:229–241

    Article  CAS  Google Scholar 

  47. Yamashita T, Fang J, Gao J, Yu Y, Lagarde MM, Zuo J (2012) Normal hearing sensitivity at low-to-middle frequencies with 34 % prestin-charge density. PLoS ONE 7:e45453. doi:10.1371/journal.pone.0045453

  48. Mount DB, Romero MF (2004) The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 447:710–721

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Nicole Chen (Stevenson High School, Lincolnshire, IL) contributed to the generation of the R130S prestin construct and the data collection at the early stage of this study. Imaging was performed at the Northwestern University Center for Advanced Microscopy, supported by NCI CCSG P30 CA060553 awarded to the Robert H Lurie Comprehensive Cancer Center. This work was supported by the National Institutes of Health grants [DC014553 to K.H., DC00089 to M.A.C., and DC011813 to J.Z.], and the Hugh Knowles Hearing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Homma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, S., Cheatham, M.A., Zheng, J. et al. The R130S mutation significantly affects the function of prestin, the outer hair cell motor protein. J Mol Med 94, 1053–1062 (2016). https://doi.org/10.1007/s00109-016-1410-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1410-7

Keywords

Navigation