Skip to main content

Advertisement

Log in

Modeling K-Ras-driven lung adenocarcinoma in mice: preclinical validation of therapeutic targets

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Lung cancer is the leading cause of cancer-related deaths worldwide, and even today, the 5-year survival rate is still below 15 %. Lung adenocarcinoma is the most frequent subtype, and approximately 25 % of the cases harbor activating mutations in the KRAS gene. To date, there is no effective treatment for patients carrying KRAS mutations due, at least in part, to the challenge posed by direct targeting of the KRAS oncoprotein. During the last decade, scientists have developed genetically engineered mouse models that faithfully recapitulate the natural history of the human tumors. These models have been used as a preclinical platform to validate a number of relevant downstream effectors of KRAS signaling. Targets displaying synthetic lethality with the KRAS oncoprotein have also been validated in these models. Here, we review these studies and discuss their potential value in the clinical setting. We also provide an outlook as of how to improve the significance of target validation studies in preclinical platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay F, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  2. Herbst RS, Haymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359:1367–80

    Article  PubMed  CAS  Google Scholar 

  3. Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK (2014) Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14:535–46

    Article  PubMed  CAS  Google Scholar 

  4. Luo SY, Lam DC (2013) Oncogenic driver mutations in lung cancer. Trans Respir Med 1:6

    Article  Google Scholar 

  5. Kris MG, Johnson BE, Berry LD, Kwiatkowski DJ, Iafrate AJ, Wistuba II, Varella-Garcia M, Franklin WA, Aronson SL, Su PF et al (2014) Using multiplexed assays of ocnogenic drivers in lung cancers to select targeted drugs. JAMA 311:1998–2006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Greulich H (2011) The genomics of lung adenocarcinoma: opportunities for targeted therapies. Genes Cancer 1:1200–1211

    Article  CAS  Google Scholar 

  7. Li T, Kung HJ, Mack PC, Gandara DR (2013) Genotypic and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J Clin Oncol 31:1039–1049

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. McCormick F (2015) The potential of targeting Ras proteins in lung cancer. Expert Opin Ther Targets 19:451–454

    Article  PubMed  CAS  Google Scholar 

  9. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM (2013) K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503:548–551

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Santos E, Martin-Zanca D, Reddy EP, Pierotti MA, Della Porta G, Barbacid M (1984) Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science 223:661–664

    Article  PubMed  CAS  Google Scholar 

  11. Stowers SJ, Glover PL, Reynolds SH, Boone LR, Maronpot RR, Anderson MW (1987) Activation of the K-ras protooncogene in lung tumors from rats and mice chronically exposed to tetranitromethane. Cancer Res 47:3212–3219

    PubMed  CAS  Google Scholar 

  12. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72:2457–2467

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Malumbres M, Barbacid M (2003) RAS oncogenes: the first 30 years. Nat Rev Cancer 3:469–465

    Article  CAS  Google Scholar 

  14. Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9:517–531

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11:761–774

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Herter-Sprie GS, Kung AL, Wong KK (2013) New cast for a new era: preclinical cancer drug development revisited. J Clin Invest 123:3639–3645

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Utku N (2012) Improving the outcomes: developing cancer therapeutics. Future Oncol 8:87–103

    Article  PubMed  Google Scholar 

  18. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–716

    Article  PubMed  CAS  Google Scholar 

  19. Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, Jacks T (2001) Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410:1111–1116

    Article  PubMed  CAS  Google Scholar 

  20. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, Jacks T, Tuveson DA (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15:3243–3248

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Guerra C, Mijimolle N, Dhawahir A, Dubus P, Barradas M, Serrano M, Campuzano V, Barbacid M (2003) Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4:111–120

    Article  PubMed  CAS  Google Scholar 

  22. Mainardi S, Mijimolle N, Francoz S, Vicente-Dueñas C, Sánchez-García I, Barbacid M (2014) Identification of cancer initiating cells in K-Ras driven lung adenocarcinoma. Proc Natl Acad Sci U S A 111:255–260

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    Article  PubMed  CAS  Google Scholar 

  24. Sutherland KD, Song JY, Kwon MC, Proost N, Zevenhoven J, Berns A (2014) Multiple cells-of-origin of mutant K-Ras-induced mouse lung adenocarcinoma. Proc Natl Acad Sci U S A 111:4952–4957

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Xu X, Rock JR, Lu Y, Futtner C, Schwab B, Guinney J, Hogan BL, Onaitis MW (2012) Evidence for type II cells as cells of origin of K-Ras-induced distal lung adenocarcinoma. Proc Natl Acad Sci U S A 109:4910–4915

    Article  PubMed Central  PubMed  Google Scholar 

  26. Desai TJ, Brownfield DG, Krasnow MA (2014) Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507:190–194

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Westcott PM, Halliwill KD, To MD, Rashid M, Rust AG, Keane TM, Delrosario R, Jen KY, Gurley KE, Kemp CJ et al (2015) The mutational landscapes of genetic and chemical models of Kras-driven lung cancer. Nature 517:489–492

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Young NP, Crowley D, Jacks T (2011) Uncoupling cancer mutations reveals critical timing of p53 loss in sarcomagenesis. Cancer Res 71:4040–4047

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Fisher GH, Wellen SL, Klimstra D, Lenczowski JM, Tichelaar JW, Lizak MJ, Whitsett JA, Koretsky A, Varmus HE (2001) Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presense and absence of tumor suppressor genes. Genes Dev 15:3249–3262

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Guerra C, Schuhmacher AJ, Cañamero M, Grippo PJ, Verdaguer L, Pérez-Gallego L, Dubus P, Sandgren EP, Barbacid M (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11:291–302

    Article  PubMed  CAS  Google Scholar 

  31. Sansom OJ, Meniel V, Wilkins JA, Cole AM, Oien KA, Marsh V, Jamieson TJ, Guerra C, Ashton GH, Barbacid M et al (2006) Loss of Apc allows phenotypic manifestation of the transformning properties of an endogenous K-ras oncogene in vivo. Proc Natl Acad Sci U S A 103:14122–14127

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Dinulescu DM, Ince TA, Quade BJ, Shafer SA, Crowley D, Jacks T (2004) Role of K-Ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med 11:63–70

    Article  PubMed  CAS  Google Scholar 

  33. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, Maher CA, Fulton R, Fulton L, Wallis J et al (2012) Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150:1121–1134

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Skoulidis F, Byers LA, Diao L, Papadimitrakopoulou VA, Tong P, Izzo J, Behrens C, Kadara H, Parra ER, Rodriguez Canales J et al (2015) Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov 5:860–877

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Jackson EL, Olive KP, Tuveson DA, Bronson R, Crowley D, Brown M, Jacks T (2005) The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res 65:10280–10288

    Article  PubMed  CAS  Google Scholar 

  36. Kwon MC, Berns A (2013) Mouse models for lung cancer. Mol Oncol 7:165–177

    Article  PubMed  CAS  Google Scholar 

  37. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, Rustgi AK, Chang S, Tuveson DA (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–483

    Article  PubMed  CAS  Google Scholar 

  38. Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, Torrice C, Wu MC, Shimamura T, Perera SA et al (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448:807–810

    Article  PubMed  CAS  Google Scholar 

  39. Chen Z, Cheng K, Walton Z, Wang Y, Ebi H, Shimamura T, Liu Y, Tupper T, Ouyang J, Li J et al (2012) A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 483:613–617

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Dhanasekaran DN, Kashef K, Lee CM, Xu H, Reddy EP (2007) Scaffold proteins of MAP-kinase modules. Oncogene 26:3185–3202

    Article  PubMed  CAS  Google Scholar 

  41. Blasco RB, Francoz S, Santamaría D, Cañamero M, Dubus P, Charron J, Baccarini M, Barbacid M (2011) c-Raf, but not B-Raf is essential for development of K-Ras oncogene-driven non-small cell lung carcinoma. Cancer Cell 19:652–663

    Article  PubMed  CAS  Google Scholar 

  42. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D, Lichinitser M, Dummer R, Grange F, Mortier L et al (2015) Improved overall survival in melanoma patients with combined dabrafenib and trametinib. New Engl J Med 372:30–39

    Article  PubMed  CAS  Google Scholar 

  43. Karreth FA, Frese KK, DeNicola GM, Baccarini M, Tuveson DA (2011) C-Raf is required for the initiation of lung cancer by K-Ras(G12D). Cancer Discov 1:128–136

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Ehrenreiter K, Kern F, Velamoor V, Meissl K, Galabova-Kovacs G, Sibilia M, Baccarini M (2009) Raf-1 addiction in Ras-induced skin carcinogenesis. Cancer Cell 16:149–160

    Article  PubMed  CAS  Google Scholar 

  45. Gupta S, Ramjaun AR, Haiko P, Wang Y, Warne PH, Nicke B, Nye E, Stamp G, Alitalo K, Downward J (2007) Binding of Ras to phosphoinositide 3-kinase p110α is required for Ras-driven tumorigenesis in mice. Cell 129:957–968

    Article  PubMed  CAS  Google Scholar 

  46. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y et al (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14:1351–1356

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Chien Y, White MA (2003) Ral GTPases are linchpin modulators of human tumour-cell proliferation and survival. EMBO Rep 4:800–806

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Peschard P, McCarthy A, Leblanc-Dominguez V, Yeo M, Guichard S, Stamp G, Marshall CJ (2012) Genetic deletion of Rala and Ralb small GTPases reveals redundant functions in development and tumorigenesis. Curr Biol 22:2063–2068

    Article  PubMed  CAS  Google Scholar 

  49. Kissil JL, Walmsley MJ, Hanlon L, Haigis KM, Kim CF, Sweet-Cordero A, Eckman MS, Tuveson DA, Capobianco AJ, Tybulewicz VL et al (2007) Requirement for Rac1 in a K-ras-induced lung cancer in the mouse. Cancer Res 67:8089–8094

    Article  PubMed  CAS  Google Scholar 

  50. Martins M, McCarthy A, Baxendale R, Guichard S, Magno L, Kessaris N, El-Bahrawy M, Yu P, Katan M (2014) Tumor suppressor role of phospholipase C epsilon in Ras-triggered cancers. Proc Natl Acad Sci U S A 111:4239–4244

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1:222–231

    Article  PubMed  CAS  Google Scholar 

  52. Puyol M, Martín A, Dubus P, Mulero F, Pizcueta P, Khan G, Guerra C, Santamaría D, Barbacid M (2010) A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 18:63–73

    Article  PubMed  CAS  Google Scholar 

  53. Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP, Barbacid M (1999) Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 22:44–52

    Article  PubMed  CAS  Google Scholar 

  54. Maraver A, Fernandez-Marcos PJ, Herranz D, Cañamero M, Muñoz-Martin M, Gómez-López G, Mulero F, Megías D, Sanchez-Carbayo M, Shen J et al (2012) Therapeutic effect of γ-Secretase inhibition in KrasG12V-driven non-small cell lung carcinoma by derepression of DUSP1 and inhibition of ERK. Cancer Cell 22:222–234

    Article  PubMed  CAS  Google Scholar 

  55. Baumgart A, Mazur PK, Anton M, Rudelius M, Schwamborn K, Feuchtinger A, Behnke K, Walch A, Braren R, Peschel C et al (2015) Opposing role of Notch1 and Notch2 in a Kras(G12D)-driven murine non-small cell lung cancer model. Oncogene 29:578–588

    Article  CAS  Google Scholar 

  56. Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR (2000) Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14:2501–2514

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Albihn A, Johnson JI, Henriksson MA (2010) MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res 107:163–224

    Article  PubMed  CAS  Google Scholar 

  58. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis AN, Swigart LB, Nasi S, Evan GI (2008) Modelling Myc inhibition as a cancer therapy. Nature 455:679–683

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. McKeown MR, Bradner JE (2014) Therapeutic strategies to inhibit MYC. Cold Spring Harb Perspect Med 4:a014266

    Article  PubMed  CAS  Google Scholar 

  60. Kimmelman AC (2015) Metabolic dependencies in RAS-driven cancers. Clin Cancer Res 21:1828–1834

    Article  PubMed  CAS  Google Scholar 

  61. Xie H, Hanai JI, Ren JG, Kats L, Burgess K, Bhargava P, Signoretti S, Billiard J, Duffy KJ, Grant A et al (2014) Targeting lactate dehydrogenase-A inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor initiating cells. Cell Metab 19:795–809

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Van Nostrand JL, Brisac A, Mello SS, Jacobs SB, Luong R, Attardi L (2015) The p53 target gene SIVA enables non-small cell lung cancer development. Cancer Discov 5:622–635

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Vicent S, Chen R, Sayles LC, Lin C, Walker RG, Gillespie AK, Subramanian A, Hinkle G, Yang X, Saif S et al (2010) Wilms tumor 1 (WT1) regulates KRAS-driven oncogenesis in mouse and human models. J Clin Invest 120:3940–3952

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Cellurale C, Sabio G, Kennedy NJ, Das M, Barlow M, Sandy P, Jacks T, Davis RJ (2011) Requirement of c-Jun NH2-terminal kinase for Ras-initiated tumor formation. Mol Cell Biol 31:1565–1576

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Mazur PK, Reynoird N, Khatri P, Jansen PW, Wilkinson AW, Liu S, Barbash O, Van Aller GS, Huddleston M, Dhanak D et al (2014) SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 510:283–287

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Bowman BM, Sebolt KA, Hoff BA, Boes JL, Daniels DL, Heist KA, Galbán CJ, Patel RM, Zhang J, Beer DG et al (2015) Phosphorylation of FADD by the kinase CK1α promotes KRASG12D-induced lung cancer. Sci Signal 8:ra9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Wang IC, Ustiyan V, Zhang Y, Cai Y, Kalin TV, Kalinichenko VV (2014) Foxm1 transcription factor is required for the initiation of lung tumorigenesis by oncogenic Kras(G12D). Oncogene 33:5391–5396

    Article  PubMed  CAS  Google Scholar 

  68. Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, Ouyang C, Jacks T (2009) Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature 462:104–107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Bassères DS, Ebbs A, Levantini E, Baldwin AS (2010) Requirement of the NF-kappaB subunit p65/RelA for K-Ras-induced lung tumorigenesis. Cancer Res 70:3537–3546

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Xia Y, Yeddula N, Leblanc M, Ke E, Zhang Y, Oldfield E, Shaw RJ, Verma IM (2012) Reduced cell proliferation by IKK2 depletion in a mouse lung-cancer model. Nat Cell Biol 14:257–265

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Gupta GP, Massagué J (2006) Cancer metastasis: building a famework. Cell 127:679–695

    Article  PubMed  CAS  Google Scholar 

  72. Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS (2004) Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature 430:1034–1037

    Article  PubMed  CAS  Google Scholar 

  73. Sinkevicius KW, Kriegel C, Bellaria KJ, Lee J, Lau AN, Leeman KT, Zhou P, Beede AM, Fillmore CM, Caswell D et al (2014) Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis. Proc Natl Acad Sci U S A 111:10299–10304

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. von Karstedt S, Conti A, Nobis M, Montinaro A, Hartwig T, Lemke J, Legler K, Annewanter F, Campbell AD, Taraborrelli L et al (2015) Cancer cell-autonomous TRAIL-R signaling promotes KRAS-driven cancer progression, invasion, and metastasis. Cancer Cell 27:561–573

    Article  CAS  Google Scholar 

  75. García-Beccaria M, Martínez P, Méndez-Pertuz M, Martínez S, Blanco-Aparicio C, Cañamero M, Mulero F, Ambrogio C, Flores JM, Megias D et al (2015) Therapeutic inhibition of TRF1 impairs the growth of p53-deficient K-RasG12V-induced lung cancer by induction of telomeric DNA damage. EMBO Mol Med 7:930–949

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Castellano E, Sheridan C, Thin MZ, Nye E, Spencer-Dene B, Diefenbacher ME, Moore C, Kumar MS, Murillo MM, Grönroos E et al (2013) Requirement for interaction of PI3-kinase p110α with Ras in lung tumor maintenance. Cancer Cell 24:617–630

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Murillo MM, Zelenay S, Nye E, Castellano E, Lassailly F, Stamp G, Downward J (2014) Ras interaction with PI3K p110α is required for tumor-induced angionegesis. J Clin Invest 124:3601–3611

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Kumar MS, Hancock DC, Molina-Arcas M, Steckel M, East P, Diefenbacher M, Armenteros-Monterroso E, Lassailly F, Matthews N, Nye E et al (2012) The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell 149:642–655

    Article  PubMed  CAS  Google Scholar 

  79. Soucek L, Whitfield JR, Sodir NM, Massó-Vallés D, Serrano E, Karnezis AN, Swigart LB, Evan GI (2013) Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev 27:504–513

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Karsli-Uzunbas G, Guo JY, Price S, Teng X, Laddha SV, Khor S, Kalaany NY, Jacks T, Chan CS, Rabinowitz JD et al (2014) Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov 4:914–927

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Ombrato L, Malanchi I (2014) The EMT universe: space between cancer cell dissemination and metastasis initiation. Crit Rev Oncog 19:349–361

    Article  PubMed  Google Scholar 

  82. Tran PT, Shroff EH, Burns TF, Thiyagarajan S, Das ST, Zabuawala T, Chen J, Cho YJ, Luong R, Tamayo P et al (2012) Twist1 suppresses senescence programs and thereby accelerates and maintains mutant Kras-induced lung tumorigenesis. PLoS Genet 8:e1002650

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Clohessy JG, Pandolfi PP (2015) Mouse hospital and co-clinical trial project-from bench to bedside. Nat Rev Clin Oncol 12:491–498

    Article  PubMed  Google Scholar 

  84. Singh M, Lima A, Molina R, Hamilton P, Clermont AC, Devasthali V, Thompson JD, Cheng JH, Reslan HB, Ho CC et al (2010) Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models. Nat Biotechnol 28:585–593

    Article  PubMed  CAS  Google Scholar 

  85. Carretero J, Shimamura T, Rikova K, Jackson AL, Wilkerson MD, Borgman CL, Buttarazzi MS, Sanofsky BA, McNamara KL, Brandstetter KA et al (2010) Integrative genomic and proteomic analyses identify targets for Lkb1-deficient metastatic lung tumors. Cancer Cell 17:547–559

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Konstantinidou G, Ramadori G, Torti F, Kangasniemi K, Ramirez RE, Cai Y, Behrens C, Dellinger MT, Brekken RA, Wistuba II et al (2013) RHOA-FAK is a required signaling axis for the maintenance of KRAS-driven lung adenocarcinomas. Cancer Discov 3:444–457

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C et al (2009) Systematic RNA inteference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462:108–112

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong KK, Elledge SJ (2009) A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137:835–848

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  89. Balbin OA, Prensner JR, Sahu A, Yocum A, Shankar S, Malik R, Fermin D, Dhanasekaran SM, Chandler B, Thomas D et al (2013) Reconstructing targetable pathways in lung cancer by integrating diverse omics data. Nat Commun 4:2617

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Zhu Z, Aref AR, Cohoon TJ, Barbie TU, Imamura Y, Yang S, Moody SE, Shen RR, Schinzel AC, Thai TC et al (2014) Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Cancer Discov 4:452–465

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Ahmed AU, Schmidt RL, Reed NR, Hesse SE, Thomas CF, Molina JR, Deschamps C, Yang P, Aubry MC, Tang AH (2008) Effect of disrupting seven-in-absentia homolog 2 function on lung cancer cell growth. J Natl Cancer Inst 100:1606–1629

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Corcoran RB, Cheng KA, Hata AN, Faber AC, Ebi H, Coffee EM, Greninger P, Brown RD, Godfrey JT, Cohoon TJ et al (2013) Synthetic lethal interactions of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutants cancer models. Cancer Cell 23:121–128

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Scholl C, Fröhling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY, Silver SJ, Tamayo P, Wadlow RC, Ramaswamy S et al (2009) Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137:821–834

    Article  PubMed  CAS  Google Scholar 

  94. Babij C, Zhang Y, Kurzeja RJ, Munzli A, Shehabeldin A, Fernando M, Quon K, Kassner PD, Ruefli-Brasse AA, Watson VJ et al (2011) STK33 kinase activity is nonessential in KRAS-dependent cancer cells. Cancer Res 71:5818–5826

    Article  PubMed  CAS  Google Scholar 

  95. Luo T, Masson K, Jaffe JD, Silkworth W, Ross NT, Scherer CA, Scholl C, Fröhling S, Carr SA, Stern AM et al (2012) STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability. Proc Natl Acad Sci U S A 109:2860–2865

    Article  PubMed Central  PubMed  Google Scholar 

  96. Kim HS, Mendiratta S, Kim J, Pecot CV, Larsen JE, Zubovych I, Seo BY, Kim J, Eskiocak B, Chung H et al (2013) Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer. Cell 155:552–566

    Article  PubMed  CAS  Google Scholar 

  97. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the EU-Framework Program (HEALTH-F2-2010-259770/LUNGTARGET and HEALTH-2010-260791/EUROCANPLATFORM), Spanish Ministry of Economy (SAF2011-30173), and Autonomous Community of Madrid (S2011/BDM-2470/ONCOCYCLE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias Drosten or Mariano Barbacid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drosten, M., Barbacid, M. Modeling K-Ras-driven lung adenocarcinoma in mice: preclinical validation of therapeutic targets. J Mol Med 94, 121–135 (2016). https://doi.org/10.1007/s00109-015-1360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1360-5

Keywords

Navigation