Skip to main content
Log in

The ins and outs of adrenergic signaling

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Adrenergic signaling, in particular signaling in the sympathetic nervous system, is a prime example of the control of an essential physiological system. It has served as a model system both for the control of mediator release and for receptor signaling and regulation. This review covers the historical development of the field and then addresses issues that represent key fields of ongoing research: the mechanisms and kinetics of receptor activation, temporal patterns of downstream signaling and signal bias, receptor mobility and aggregation, and signal compartmentation and specificity. The available evidence suggests that adrenergic signaling may involve complex spatiotemporal patterns, which give texture to the signaling process and may contain additional biological information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Furchgott RF (1959) The receptors for epinephrine and norepinephrine (adrenergic receptors). Pharmacol Rev 11:429–41

    CAS  PubMed  Google Scholar 

  2. Lefkowitz RJ (2013) A brief history of G-protein coupled receptors (Nobel Lecture). Angew Chem Int Ed Engl 52:6366–6378

    Article  CAS  PubMed  Google Scholar 

  3. Langley JN (1905) On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J Physiol 33:374–413

    Article  PubMed Central  PubMed  Google Scholar 

  4. Dale HH (1906) On some physiological actions of ergot. J Physiol 34:163–206

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ehrlich P, Morgenroth J (1900) Über Hämolysine. Vierte Mittheilung. Berliner Klinische Wochenschrift 31:681–687

    Google Scholar 

  6. Fontana F (1781) Traité sur le venin de la vipère, sur les poisons américains, sur le laurier cerise, et sur quelques autres poisons végétaux. Florence 1781

  7. Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153:586–600

    CAS  PubMed  Google Scholar 

  8. Ahlquist RP (1973) Adrenergic receptors: a personal and practical view. Perspect Biol Med 17:119–122

    Article  CAS  PubMed  Google Scholar 

  9. Dale H (1943) Modes of drug action. General introductory address. Trans Faraday Soc 39:319b–322b

    Article  Google Scholar 

  10. Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG (1967) Differentiation of receptor systems activated by sympathomimetic amines. Nature 214:597–598

    Article  CAS  PubMed  Google Scholar 

  11. Starke K (1981) Alpha-adrenoceptor subclassification. Rev Physiol Biochem Pharmacol 88:199–236

    Article  CAS  PubMed  Google Scholar 

  12. Black JW, Duncan WA, Shanks RG (1965) Comparison of some properties of pronethalol and propranolol. Br J Pharmacol 25:577–591

    CAS  Google Scholar 

  13. Mukherjee C, Caron MG, Coverstone M, Lefkowitz RJ (1975) Identification of adenylate cyclase-coupled β-adrenergic receptors in frog erythrocytes with (−)-[3H]alprenolol. J Biol Chem 250:4869–4876

    CAS  PubMed  Google Scholar 

  14. Cerione RA, Strulovici B, Benovic JL, Lefkowitz RJ, Caron MG (1983) Pure β-adrenergic receptor: the single polypeptide confers catecholamine responsiveness to adenylate cyclase. Nature 306:562–566

    Article  CAS  PubMed  Google Scholar 

  15. Cerione RA, Codina J, Benovic JL, Lefkowitz RJ, Birnbaumer L, Caron MG (1984) The mammalian ß2-adrenergic receptor: reconstitution of functional interactions between pure receptor and pure stimulatory nucleotide binding protein of the adenylate cyclase system. Biochemistry 23:4519–4525

    Article  CAS  PubMed  Google Scholar 

  16. Cerione RA, Sibley DR, Codina J, Benovic JL, Winslow J, Neer EJ, Birnbaumer L, Caron MG, Lefkowitz RJ (1984) Reconstitution of a hormone-sensitive adenylate cyclase system. The pure beta-adrenergic receptor and guanine nucleotide regulatory protein confer hormone responsiveness on the resolved catalytic unit. J Biol Chem 259:9979–9982

    CAS  PubMed  Google Scholar 

  17. Benovic JL, Shorr RGL, Caron MG, Lefkowitz RJ (1984) The mammalian β2-adrenergic receptor: purification and characterization. Biochemistry 23:4510–4518

    Article  CAS  PubMed  Google Scholar 

  18. May DC, Ross EM, Gilman AG, Smigel MD (1985) Reconstitution of catecholamine-stimulated adenylate cyclase activity using three purified proteins. J Biol Chem 260:15829–33

    CAS  PubMed  Google Scholar 

  19. Hekman M, Feder D, Keenan AK, Gal A, Klein HW, Pfeuffer T, Levitzki A, Helmreich EJM (1984) Reconstitution of β-adrenergic receptor with components of adenylate cyclase. EMBO J 3:3339–3345

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Feder D, Im MJ, Klein HW, Hekman M, Holzhöfer A, Dees C, Levitzki A, Helmreich EJM, Pfeuffer T (1986) Reconstitution of β1-adrenoceptor-dependent adenylate cyclase from purified components. EMBO J 5:1509–1514

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Dixon RAF, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG, Frielle T, Bolanowski MA, Bennett CD, Rands E, Diehl RE et al (1986) Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321:75–79

    Article  CAS  PubMed  Google Scholar 

  22. Ovchinnikov YA (1982) Rhodopsin and bacteriorhodopsin: structure-function relationships. FEBS Lett 148:179–191

    Article  CAS  PubMed  Google Scholar 

  23. Hargrave PA, McDowell JH, Curtis DR, Wang JK, Juszczak E, Fong SL, Rao JK, Argos P (1983) The structure of bovine rhodopsin. Biophys Struct Mech 9:235–244

    Article  CAS  PubMed  Google Scholar 

  24. Cerione RA, Staniszewski C, Benovic JL, Lefkowitz RJ, Caron MG, Gierschik P, Somers R, Spiegel AM, Codina J, Birnbaumer L (1985) Specificity of the functional interactions of the β-adrenergic receptor and rhodopsin with guanine nucleotide regulatory proteins reconstituted in phospholipid vesicles. J Biol Chem 260:1493–1500

    CAS  PubMed  Google Scholar 

  25. Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR Jr, Trendelenburg AU (1994) International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121–136

    CAS  PubMed  Google Scholar 

  26. Milano CA, Allen LF, Rockman HA, Dolber PC, McMinn TR, Chien KR, Johnson TD, Bond RA, Lefkowitz RJ (1994) Enhanced myocardial function in transgenic mice overexpressing the β2-adrenergic receptor. Science 264:582–586

    Article  CAS  PubMed  Google Scholar 

  27. Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D, Barsh GS, Kobilka BK (1996) Cardiovascular regulation in mice lacking α2-adrenergic receptor subtypes b and c. Science 273:803–805

    Article  CAS  PubMed  Google Scholar 

  28. Rockman HA, Koch WJ, Lefkowitz RJ (1997) Cardiac function in genetically engineered mice with altered adrenergic receptor signaling. American Journal of Physiology 272:H1553–H1559

    CAS  PubMed  Google Scholar 

  29. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF et al (2007) Crystal structure of the human β2-adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  CAS  PubMed  Google Scholar 

  30. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D et al (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JE, Lazareno S, Molloy JE, Birdsall NJ (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci USA 107:2693–2698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kasai RS, Suzuki KG, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A (2011) Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol 192:463–480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Calebiro D, Rieken F, Wagner J, Sungkaworn T, Zabel U, Borzi A, Cocucci E, Zürn A, Lohse MJ (2013) Single-molecule analysis of fluorescently labeled GPCRs reveals receptor-specific complexes with distinct dynamics and organization. Proc Natl Acad Sci USA 110:743–748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Kobilka B (2013) The structural basis of G-protein-coupled receptor signaling (Nobel Lecture). Angew Chem Int Ed 52:6380–6388

    Article  CAS  Google Scholar 

  35. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  36. Smit MJ, Vischer HF, Bakker RA, Jongejan A, Timmerman H, Pardo L, Leurs R (2007) Pharmacogenomic and structural analysis of constitutive G protein-coupled receptor activity. Annu Rev Pharmacol Toxicol 47:53–87

    Article  CAS  PubMed  Google Scholar 

  37. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194

    Article  CAS  PubMed  Google Scholar 

  38. Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE (2012) Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys 41:429–452

    Article  CAS  PubMed  Google Scholar 

  39. Dror RO, Mildorf TJ, Hilger D, Manglik A, Borhani DW, Arlow DH, Philippsen A, Villanueva N, Yang Z, Lerch MT et al (2015) Structural basis for nucleotide exchange in heterotrimeric G proteins. Science 348:1361–1365

    Article  CAS  PubMed  Google Scholar 

  40. Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP et al (2013) The dynamic process of β2-adrenergic receptor activation. Cell 152:532–542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Manglik A, Kim TH, Masureel M, Altenbach C, Yang Z, Hilger D, Lerch MT, Kobilka TS, Thian FS, Hubbell WL et al (2015) Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161:1101–1111

    Article  CAS  PubMed  Google Scholar 

  42. Sommer ME, Elgeti M, Hildebrand PW, Szczepek M, Hofmann KP, Scheerer P (2015) Structure-based biophysical analysis of the interaction of rhodopsin with G protein and arrestin. Methods Enzymol 556:563–608

    Article  PubMed  Google Scholar 

  43. Hofmann KP, Spahn CM, Heinrich R, Heinemann U (2006) Building functional modules from molecular interactions. Trends Biochem Sci 31:497–508

    Article  CAS  PubMed  Google Scholar 

  44. Lohse MJ, Hofmann KP (2015) Spatial and temporal aspects of signaling by GPCRs. Mol Pharmacol. doi:10.1124/mol.115.100248

  45. Hofmann KP, Scheerer P, Hildebrand PW, Choe HW, Park JH, Heck M, Ernst OP (2009) A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem Sci 34:540–552

    Article  CAS  PubMed  Google Scholar 

  46. Olofsson L, Felekyan S, Doumazane E, Scholler P, Fabre L, Zwier JM, Rondard P, Seidel CA, Pin JP, Margeat E (2014) Fine tuning of sub-millisecond conformational dynamics controls metabotropic glutamate receptors agonist efficacy. Nat Commun 5:5206

    Article  CAS  PubMed  Google Scholar 

  47. Yao X, Parnot C, Deupi X, Ratnala VR, Swaminath G, Farrens D, Kobilka B (2006) Coupling ligand structure to specific conformational switches in the β2-adrenoceptor. Nat Chem Biol 2:417–422

    Article  CAS  PubMed  Google Scholar 

  48. Vilardaga JP, Bünemann M, Krasel C, Castro M, Lohse MJ (2003) Measurement of the millisecond activation switch of G-protein-coupled receptors in living cells. Nature Biotechnology 21:807–812

    Article  CAS  PubMed  Google Scholar 

  49. Lohse MJ, Nikolaev VO, Hein P, Hoffmann C, Vilardaga JP, Bünemann M (2008) Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors. Trends Pharmacol Sci 29:159–165

    Article  CAS  PubMed  Google Scholar 

  50. Lohse MJ, Nuber S, Hoffmann C (2012) Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharm Rev 64:299–336

    Article  CAS  PubMed  Google Scholar 

  51. Mahalingam M, Martínez-Mayorga K, Brown MF, Vogel R (2008) Two protonation switches control rhodopsin activation in membranes. Proc Natl Acad Sci USA 105:17795–17800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Elgeti M, Rose AS, Bartl FJ, Hildebrand PW, Hofmann KP, Heck M (2013) Precision vs flexibility in GPCR signaling. J Am Chem Soc 135:12305–12312

    Article  CAS  PubMed  Google Scholar 

  53. Zürn A, Zabel U, Vilardaga JP, Schindelin H, Lohse MJ, Hoffmann C (2009) Fluorescence resonance energy transfer analysis of α2A-adrenergic receptor activation reveals distinct agonist-specific conformational changes. Mol Pharmacol 75:534–541

    Article  PubMed  CAS  Google Scholar 

  54. Bünemann M, Frank M, Lohse MJ (2003) Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc Natl Acad Sci USA 100:16077–16082

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Hein P, Frank M, Hoffmann C, Lohse MJ, Bünemann M (2005) Dynamics of receptor/G protein coupling in living cells. EMBO J 24:4106–4114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Hein P, Rochais F, Hoffmann C, Dorsch S, Nikolaev VO, Engelhardt S, Berlot CH, Lohse MJ, Bünemann M (2006) Gs activation is time-limiting in initiating receptor-mediated signaling. J Biol Chem 281:33345–33351

    Article  CAS  PubMed  Google Scholar 

  57. Jensen JB, Lyssand JS, Hague C, Hille B (2009) Fluorescence changes reveal kinetic steps of muscarinic receptor-mediated modulation of phosphoinositides and Kv7.2/7.3 K+ channels. J Gen Physiol 133:347–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Hoffmann C, Nuber S, Zabel U, Ziegler N, Winkler C, Hein P, Berlot CH, Bünemann M, Lohse MJ (2012) Comparison of the activation kinetics of the M3-ACh-receptor and a constitutively active mutant receptor in living cells. Mol Pharmacol 82:236–245

    Article  CAS  PubMed  Google Scholar 

  59. Krasel C, Bünemann M, Lorenz K, Lohse MJ (2005) β-Arrestin binding to the β2-adrenergic receptor requires both receptor phosphorylation and receptor activation. J Biol Chem 280:9528–9535

    Article  CAS  PubMed  Google Scholar 

  60. Lohse MJ, Hoffmann C (2014) Interaction between arrestins and receptors. Handb Exp Pharmacol 219:15–56

    Article  CAS  PubMed  Google Scholar 

  61. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990) β-Arrestin: a protein that regulates β-adrenergic receptor function. Science 248:1547–1550

    Article  CAS  PubMed  Google Scholar 

  62. Tian X, Kang DS, Benovic JL (2014) β-arrestins and G protein-coupled receptor trafficking. Handb Exp Pharmacol 219:173–186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Shenoy SK, Lefkowitz RJ (2011) β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32:521–533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Lohse MJ, Calebiro D (2013) Receptor signals come in waves. Nature 495:457–458

    Article  CAS  PubMed  Google Scholar 

  65. Calebiro D, Nikolaev VO, Persani L, Lohse MJ (2010) Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci 31:221–228

    Article  CAS  PubMed  Google Scholar 

  66. Tsvetanova NG, Irannejad R, von Zastrow M (2015) G protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes. J Biol Chem 290:6689–6696

    Article  CAS  PubMed  Google Scholar 

  67. Galandrin S, Bouvier M (2006) Distinct signaling profiles of β1 and β2-adrenoceptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 70:1575–1584

    Article  CAS  PubMed  Google Scholar 

  68. Reiner S, Ambrosio M, Hoffmann C, Lohse MJ (2010) Differential signaling of the endogenous agonists at the β2-adrenergic receptor. J Biol Chem 285:36188–36198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Berridge MJ, Rapp PE (1979) A comparative survey of the function, mechanism and control of cellular oscillators. J Exp Biol 81:217–79

    CAS  PubMed  Google Scholar 

  70. Tsien RW, Tsien RY (1990) Calcium channels, stores, and oscillations. Annu Rev Cell Biol 6:715–760

    Article  CAS  PubMed  Google Scholar 

  71. Berridge MJ (1990) Calcium oscillations. J Biol Chem 265:9583–9586

    CAS  PubMed  Google Scholar 

  72. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325

    Article  CAS  PubMed  Google Scholar 

  73. Dupont G, Combettes L, Bird GS, Putney JW (2011) Calcium oscillations. Cold Spring Harb Perspect Biol 3:a004226

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Dyachok O, Isakov Y, Sågetorp J, Tengholm A (2006) Oscillations of cyclic AMP in hormone-stimulated insulin-secreting beta-cells. Nature 439:349–352

    Article  CAS  PubMed  Google Scholar 

  75. Zaccolo M, Pozzan T (2003) cAMP and Ca2+ interplay: a matter of oscillation patterns. Trends Neurosci 26:53–55

    Article  CAS  PubMed  Google Scholar 

  76. Willoughby D, Cooper DM (2007) Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87:965–1010

    Article  CAS  PubMed  Google Scholar 

  77. Werthmann RC, von Hayn K, Nikolaev VO, Lohse MJ, Bünemann M (2009) Real-time monitoring of cAMP levels in living endothelial cells: thrombin transiently inhibits adenylyl cyclase 6. J Physiol 587:4091–4104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Von Hayn K, Werthmann RC, Nikolaev VO, Hommers LG, Lohse MJ, Bünemann M (2010) Gq-mediated Ca2+ signals inhibit adenylyl cyclases 5/6 in vascular smooth muscle cells. Am J Physiol Cell Physiol 298:C324–C332

    Article  CAS  Google Scholar 

  79. Dou H, Wang C, Wu X, Yao L, Zhang X, Teng S, Xu H, Liu B, Wu Q, Zhang Q et al (2015) Calcium influx activates adenylyl cyclase 8 for sustained insulin secretion in rat pancreatic beta cells. Diabetologia 58:324–333

    Article  CAS  PubMed  Google Scholar 

  80. Willoughby D, Everett KL, Halls ML, Pacheco J, Skroblin P, Vaca L, Klussmann E, Cooper DM (2012) Direct binding between Orai1 and AC8 mediates dynamic interplay between Ca2+ and cAMP signaling. Sci Signal 5:ra29

    Article  PubMed  Google Scholar 

  81. Capiod T, Noel J, Combettes L, Claret M (1991) Cyclic AMP-evoked oscillations of intracellular [Ca2+] in guinea-pig hepatocytes. Biochem J 275:277–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Nuttle LC, Farley JM (1996) Frequency modulation of acetylcholine-induced oscillations in Ca++ and Ca++-activated Cl current by cAMP in tracheal smooth muscle. J Pharmacol Exp Ther 277:753–760

    CAS  PubMed  Google Scholar 

  83. Landa LR Jr, Harbeck M, Kaihara K, Chepurny O, Kitiphongspattana K, Graf O, Nikolaev VO, Lohse MJ, Holz GG, Roe MW (2005) Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 beta-cell line. J Biol Chem 280:31294–31302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Harbeck MC, Chepurny O, Nikolaev VO, Lohse MJ, Holz GG, Roe MW (2006) Simultaneous optical measurements of cytosolic Ca2++ and cAMP in single cells. Science STKE 353:pl6

    Google Scholar 

  85. Parekh AB (2011) Decoding cytosolic Ca2+ oscillations. Trends Biochem Sci 36:78–87

    Article  CAS  PubMed  Google Scholar 

  86. Mehta S, Aye-Han NN, Ganesan A, Oldach L, Gorshkov K, Zhang J (2014) Calmodulin-controlled spatial decoding of oscillatory Ca2+ signals by calcineurin. Elife 3:e03765

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Kar P, Parekh AB (2015) Distinct spatial Ca2+ signatures selectively activate different NFAT transcription factor isoforms. Mol Cell 58:232–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Henis YI, Hekman M, Elson EL, Helmreich EJM (1982) Lateral motion of ß receptors in membranes of cultured liver cells. Proc Natl Acad Sci USA 79:2907–2911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Carayon K, Moulédous L, Combedazou A, Mazères S, Haanappel E, Salomé L, Mollereau C (2014) Heterologous regulation of Mu-opioid (MOP) receptor mobility in the membrane of SH-SY5Y cells. J Biol Chem 289:28697–28706

    Article  CAS  PubMed  Google Scholar 

  90. Dorsch S, Klotz KN, Engelhardt S, Lohse MJ, Bünemann M (2009) Analysis of receptor oligomerization by FRAP microscopy. Nat Meth 6:225–230

    Article  CAS  Google Scholar 

  91. Lohse MJ (2010) Dimerization in GPCR mobility and signaling. Curr Op Pharmacol 10:53–58

    Article  CAS  Google Scholar 

  92. Suzuki K, Ritchie K, Kajikawa E, Fujiwara T, Kusumi A (2005) Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys J 88:3659–3680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Kasai RS, Kusumi A (2014) Single-molecule imaging revealed dynamic GPCR dimerization. Curr Opin Cell Biol 27:78–86

    Article  CAS  PubMed  Google Scholar 

  94. Dunn HA, Ferguson SS (2015) PDZ protein regulation of GPCR trafficking and signaling pathways. Mol Pharmacol. [Epub ahead of print]

  95. Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P, Paur H, Lohse MJ, Korchev YE, Harding SE, Gorelik J (2010) β2-Adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327:1653–1657

    Article  CAS  PubMed  Google Scholar 

  96. Vilardaga JP, Jean-Alphonse FG, Gardella TJ (2014) Endosomal generation of cAMP in GPCR signaling. Nat Chem Biol 10:700–706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. De Camilli P, Moretti M, Donini SD, Walter U, Lohmann SM (1986) Heterogeneous distribution of the cAMP receptor protein RII in the nervous system: evidence for its intracellular accumulation on microtubules, microtubule-organizing centers, and in the area of the Golgi complex. J Cell Biol 103:189–203

    Article  PubMed  Google Scholar 

  98. Bacskai BJ, Hochner B, Mahaut-Smith M, Adams SR, Kaang BK, Kandel ER, Tsien RY (1993) Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science 260:222–226

    Article  CAS  PubMed  Google Scholar 

  99. Jurevicius J, Fischmeister R (1996) cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by β-adrenergic agonists. Proc Natl Acad Sci USA 93:295–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Nikolaev VO, Bünemann M, Schmitteckert E, Lohse MJ, Engelhardt S (2006) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching β1-adrenergic but locally confined β2-adrenergic receptor-mediated signaling. Circ Res 99:1084–1091

    Article  CAS  PubMed  Google Scholar 

  101. Iancu RV, Ramamurthy G, Warrier S, Nikolaev VO, Lohse MJ, Jones SW, Harvey RD (2008) Cytoplasmic cAMP concentrations in intact cardiac myocytes. Am J Physiol Cell Physiol 295:C414–C422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Nikolaev VO, Bünemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218

    Article  CAS  PubMed  Google Scholar 

  103. Rich TC, Webb KJ, Leavesley SJ (2014) Can we decipher the information content contained within cyclic nucleotide signals? J Gen Physiol 143:17–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Davare MA, Avdonin V, Hall DD, Peden EM, Burette A, Weinberg RJ, Horne MC, Hoshi T, Hell JW (2001) A β2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science 293:98–101

    Article  CAS  PubMed  Google Scholar 

  105. Perry SJ, Baillie GS, Kohout TA, McPhee I, Magiera MM, Ang KL, Miller WE, McLean AJ, Conti M, Houslay MD et al (2002) Targeting of cyclic AMP degradation to β2-adrenergic receptors by β-arrestins. Science 298:834–836

    Article  CAS  PubMed  Google Scholar 

  106. Shen JX, Cooper DM (2013) AKAP79, PKC, PKA and PDE4 participate in a Gq-linked muscarinic receptor and adenylate cyclase 2 cAMP signalling complex. Biochem J 455:47–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Cooper DM, Tabbasum VG (2014) Adenylate cyclase-centred microdomains. Biochem J 462:199–213

    Article  CAS  PubMed  Google Scholar 

  108. Sprenger JU, Perera RK, Steinbrecher JH, Lehnart SE, Maier LS, Hasenfuss G, Nikolaev VO (2015) In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease. Nat Commun 6:6965

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Lohse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohse, M.J. The ins and outs of adrenergic signaling. J Mol Med 93, 955–962 (2015). https://doi.org/10.1007/s00109-015-1323-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1323-x

Keywords

Navigation