Skip to main content

Advertisement

Log in

Endothelial sphingosine kinase/SPNS2 axis is critical for vessel-like formation by human mesoangioblasts

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The interaction between endothelial cells and pericytes is crucial for the stabilization of newly formed vessels in angiogenesis. The comprehension of the mechanisms regulating pericyte recruitment might open therapeutical perspectives on vascular-related pathologies. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that derives from sphingomyelin catabolism and regulates biological functions in cell survival, proliferation, and differentiation. In this study, we aimed to identify the role of S1P axis in the intercellular communication between human mesenchymal progenitor mesoangioblasts (MAB) and endothelial cells (human microvascular endothelial cells (H-MVEC)) in the formation of capillary-like structures. We demonstrated that the S1P biosynthetic pathway brought about by sphingosine kinases (SK) SK1 and SK2 as well as spinster homolog 2 (SPNS2) transporter in H-MVEC is crucial for MAB migration measured by Boyden chambers and for the formation and stabilization of capillary-like structures in a 3D Matrigel culture. Moreover, the conditioned medium (CM) harvested from H-MVEC, where SK1, SK2, and SPNS2 were down-regulated, exerted a significantly diminished effect on MAB capillary morphogenesis and migration. Notably, we demonstrated that S1P1 and S1P3 receptors were positively involved in CM-induced capillary-like formation and migration, while S1P2 exerted a negative role on CM-induced migratory action of MAB. Finally, SK inhibition as well as MAB S1P1 and S1P3 down-regulation impaired H-MVEC-MAB cross-talk significantly reducing in vivo angiogenesis evaluated by Matrigel plug assay. These findings individuate novel targets for the employment of MAB in vascular-related pathologic conditions.

Key message

• Down-regulation of SK1/2 in H-MVEC impaired vessel formation when cultured with MAB.

• H-MVEC SPNS2 is critical for morphogenesis and migration induced by H-MVEC CM of MAB.

• CM from SK1- and SK2-siRNA H-MVEC impaired morphogenesis and migration of MAB.

• S1P1/3 were involved on CM-induced morphogenesis and migration of MAB.

• Matrigel plug assay showed the role of S1P axis in MAB-endothelial cell interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SK:

Sphingosine kinase

S1P:

Sphingosine 1-phosphate

FCS:

Fetal calf serum

siRNA:

Short-interfering RNA

SCR:

Scrambled

CM:

Conditioned medium

PBS:

Phosphate-buffered saline

DMEM:

Dulbecco’s modified Eagle’s medium

BSA:

Bovine serum albumin

TGFβ:

Transforming growth factor beta

SPNS2:

Spinster homolog 2

bFGF:

Basic fibroblast growth factor

VEGF:

Vascular endothelial growth factor

MAPK:

Mitogen-activated protein kinase

PI3K:

Phosphatidylinositol 3-kinase

SCID:

Severe combined immunodeficiency

References

  1. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693

    Article  CAS  PubMed  Google Scholar 

  2. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Maceyka M, Harikumar KB, Milstien S, Spiegel S (2012) Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 22:50–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Spiegel S, Milstien S (2007) Functions of the multifaceted family of sphingosine kinases and some close relatives. J Biol Chem 282:2125–2129

    Article  CAS  PubMed  Google Scholar 

  5. Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25:11113–11121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kono M, Mi Y, Liu Y, Sasaki T, Allende ML, Wu YP, Yamashita T, Proia RL (2004) The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem 279:29367–29373

    Article  CAS  PubMed  Google Scholar 

  7. Cossu G, Bianco P (2003) Mesoangioblasts—vascular progenitors for extravascular mesodermal tissues. Curr Opin Genet Dev 13:537–542

    Article  CAS  PubMed  Google Scholar 

  8. Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A, Caprioli A, Sirabella D, Baiocchi M, De Maria R et al (2002) The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 129:2773–2783

    CAS  PubMed  Google Scholar 

  9. Sampaolesi M, Blot S, D'Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud JL, Galvez BG, Barthélémy I et al (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444:574–579

    Article  CAS  PubMed  Google Scholar 

  10. Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D'Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MG, Campbell KP et al (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301:487–492

    Article  CAS  PubMed  Google Scholar 

  11. Donati C, Marseglia G, Magi A, Serrati S, Cencetti F, Bernacchioni C, Nannetti G, Benelli M, Brunelli S, Torricelli F et al (2011) Sphingosine 1-phosphate induces differentiation of mesoangioblasts towards smooth muscle. A role for GATA6. PloS one 6:e20389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Morosetti R, Mirabella M, Gliubizzi C, Broccolini A, De Angelis L, Tagliafico E, Sampaolesi M, Gidaro T, Papacci M, Roncaglia E et al (2006) MyoD expression restores defective myogenic differentiation of human mesoangioblasts from inclusion-body myositis muscle. Prot Natl Acad Sci USA 103:16995–17000

    Article  CAS  Google Scholar 

  13. English K, Tonlorenzi R, Cossu G, Wood KJ (2013) Mesoangioblasts suppress T cell proliferation through IDO and PGE-2-dependent pathways. Stem Cells Dev 22:512–523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Livak KJ, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  15. Calise S, Blescia S, Cencetti F, Bernacchioni C, Donati C, Bruni P (2012) Sphingosine 1-phosphate stimulates proliferation and migration of satellite cells: role of S1P receptors. Biochim Biophys Acta 1823:439–450

    Article  CAS  PubMed  Google Scholar 

  16. Becciolini L, Meacci E, Donati C, Cencetti F, Rapizzi E, Bruni P (2006) Sphingosine 1-phosphate inhibits cell migration in C2C12 myoblasts. Biochim Biophys Acta 1761:43–51

    Article  CAS  PubMed  Google Scholar 

  17. D'Alessio S, Fibbi G, Cinelli M, Guiducci S, Del Rosso A, Margheri F, Serratì S, Pucci M, Kahaleh B, Fan P et al (2004) Matrix metalloproteinase 12-dependent cleavage of urokinase receptor in systemic sclerosis microvascular endothelial cells results in impaired angiogenesis. Arthritis Rheum 50:3275–3285

    Article  PubMed  Google Scholar 

  18. Liu J, Wang XB, Park DS, Lisanti MP (2002) Caveolin-1 expression enhances endothelial capillary tubule formation. J Biol Chem 277:10661–10668

    Article  CAS  PubMed  Google Scholar 

  19. Japtok L, Schaper K, Bäumer WR, Adeke HH, Jeong SK, Kleuser B (2012) Sphingosine 1-phosphate modulates antigen capture by murine Langerhans cells via the S1P2 receptor subtype. PLoS One 7(11):e49427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Margheri F, Schiavone N, Papucci L, Magnelli L, Serratì S, Chillà A, Laurenzana A, Bianchini F, Calorini L, Torre E et al (2012) GDF5 regulates TGFß-dependent angiogenesis in breast carcinoma MCF-7 cells: in vitro and in vivo control by anti-TGFß peptides. PLoS One 7(11):e50342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Roobrouck VD, Clavel C, Jacobs SA, Ulloa-Montoya F, Crippa S, Sohni A, Roberts SJ, Luyten FP, Van Gool SW, Sampaolesi M et al (2011) Differentiation potential of human postnatal mesenchymal stem cells, mesoangioblasts, and multipotent adult progenitor cells reflected in their transcriptome and partially influenced by the culture conditions. Stem Cells 29:871–882

    Article  CAS  PubMed  Google Scholar 

  22. Venkataraman K, Lee YM, Michaud J, Thangada S, Ai Y, Bonkovsky HL, Parikh NS, Habrukowich C, Hla T (2008) Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res 102(6):669–676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hisano Y, Kobayashi N, Yamaguchi A, Nishi T (2012) Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells. PloS one 7:e38941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Donati C, Cencetti F, Nincheri P, Bernacchioni C, Brunelli S, Clementi E, Cossu G, Bruni P (2007) Sphingosine 1-phosphate mediates proliferation and survival of mesoangioblasts. Stem Cells 25:1713–1719

    Article  CAS  PubMed  Google Scholar 

  25. Lucke S, Levkau B (2010) Endothelial functions of sphingosine-1-phosphate. Cell Physiol Biochem 26:87–96

    Article  CAS  PubMed  Google Scholar 

  26. Oo ML, Thangada S, Wu MT, Liu CH, Macdonald TL, Lynch KR, Lin CY, Hla T (2007) Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem 282(12):9082–9089

    Article  CAS  PubMed  Google Scholar 

  27. Margheri F, Chillà A, Laurenzana A, Serratì S, Mazzanti B, Saccardi R, Santosuosso M, Danza G, Sturli N, Rosati F et al (2011) Endothelial progenitor cell-dependent angiogenesis requires localization of the full-length form of uPAR in caveolae. Blood 118(13):3743–3755

    Article  CAS  PubMed  Google Scholar 

  28. Matsumoto T, Turesson I, Book M, Gerwins P, Claesson-Welsh L (2002) p38 MAP kinase negatively regulates endothelial cell survival, proliferation, and differentiation in FGF-2-stimulated angiogenesis. J Cell Biol 156(1):149–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Huang J, Kontos CD (2002) PTEN modulates vascular endothelial growth factor-mediated signaling and angiogenic effects. J Biol Chem 277(13):10760–10766

    Article  CAS  PubMed  Google Scholar 

  30. Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR (1992) A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 67(4):519–528

    CAS  PubMed  Google Scholar 

  31. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  CAS  PubMed  Google Scholar 

  32. Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martín-Vasallo P, Díaz-Flores L Jr (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24:909–969

    CAS  PubMed  Google Scholar 

  33. Beltramo E, Porta M (2013) Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem 20:3218–3225

    Article  CAS  PubMed  Google Scholar 

  34. Donati C, Cencetti F, De Palma C, Rapizzi E, Brunelli S, Cossu G, Clementi E, Bruni P (2009) TGFbeta protects mesoangioblasts from apoptosis via sphingosine kinase-1 regulation. Cell Signal 21:228–236

    Article  CAS  PubMed  Google Scholar 

  35. Poitevin S, Cussac D, Leroyer AS, Albinet V, Sarlon-Bartoli G, Guillet B, Hubert L, Andrieu-Abadie N, Couderc B, Parini A et al (2014) Sphingosine kinase 1 expressed by endothelial colony-forming cells has a critical role in their revascularization activity. Cardiovasc Res 103:121–130

    Article  CAS  PubMed  Google Scholar 

  36. Bernacchioni C, Cencetti F, Blescia S, Donati C, Bruni P (2012) Sphingosine kinase/sphingosine 1-phosphate axis: a new player for insulin-like growth factor-1-induced myoblast differentiation. Skelet Muscle 2:15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Hait NC, Sarkar S, Le Stunff H, Mikami A, Maceyka M, Milstien S, Spiegel S (2005) Role of sphingosine kinase 2 in cell migration toward epidermal growth factor. J Biol Chem 280:29462–29469

    Article  CAS  PubMed  Google Scholar 

  38. Miller AV, Alvarez SE, Spiegel S, Lebman DA (2008) Sphingosine kinases and sphingosine-1-phosphate are critical for transforming growth factor beta-induced extracellular signal-regulated kinase 1 and 2 activation and promotion of migration and invasion of esophageal cancer cells. Mol Cell Biol 28:4142–4151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Hisano Y, Kobayashi N, Yamaguchi A, Nishi T (2012) Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells. PLoS One 7(6):e38941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Wang F, Van Brocklyn JR, Hobson JP, Movafagh S, Zukowska-Grojec Z, Milstien S, Spiegel S (1999) Sphingosine 1-phosphate stimulates cell migration through a G(i)-coupled cell surface receptor. Potential involvement in angiogenesis. J Biol Chem 274:35343–35350

    Article  CAS  PubMed  Google Scholar 

  41. Ohmori T, Yatomi Y, Okamoto H, Miura Y, Rile G, Satoh K, Ozaki Y (2001) G(i)-mediated Cas tyrosine phosphorylation in vascular endothelial cells stimulated with sphingosine 1-phosphate: possible involvement in cell motility enhancement in cooperation with Rho-mediated pathways. J Biol Chem 276:5274–5280

    Article  CAS  PubMed  Google Scholar 

  42. Ryu Y, Takuwa N, Sugimoto N, Sakurada S, Usui S, Okamoto H, Matsui O, Takuwa Y (2002) Sphingosine-1-phosphate, a platelet-derived lysophospholipid mediator, negatively regulates cellular Rac activity and cell migration in vascular smooth muscle cells. Circ Res 90:325–332

    Article  CAS  PubMed  Google Scholar 

  43. Donati C, Bruni P (2006) Sphingosine 1-phosphate regulates cytoskeleton dynamics: implications in its biological response. Biochim Biophys Acta 1758:2037–2048

    Article  CAS  PubMed  Google Scholar 

  44. Cappellari O, Cossu G (2014) Pericytes in development and pathology of skeletal muscle. Circ Res 113:341–347

    Article  Google Scholar 

  45. Au P, Tam J, Fukumura D, Jain RK (2008) Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111(9):4551–4558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Virgintino D, Ozerdem U, Girolamo F, Roncali L, Stallcup WB, Perris R (2008) Reversal of cellular roles in angiogenesis: implications for anti-angiogenic therapy. J Vasc Res 45:129–131

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Prof. Giulio Cossu and Dr. Rossana Tonlorenzi, Stem Cell Research Institute, Istituto Scientifico H San Raffaele, 20132 Milano, Italy, for providing human MAB and to K. L. Lynch and T. L. MacDonald (University of Virginia, Charlottesville, VA, USA) for providing VPC96047 and VPC96091.

This work was supported by Fondi di Ateneo (ex 60 %) to CD; Ente Cassa di Risparmio di Firenze to GF; Associazione Italiana Ricerca sul Cancro (AIRC) (Grant IG 2013 N. 14266 to MDR).

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Donati.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurenzana, A., Cencetti, F., Serratì, S. et al. Endothelial sphingosine kinase/SPNS2 axis is critical for vessel-like formation by human mesoangioblasts. J Mol Med 93, 1145–1157 (2015). https://doi.org/10.1007/s00109-015-1292-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1292-0

Keywords

Navigation