Skip to main content
Log in

Transducin-like enhancer of split 3 (TLE3) in adipose tissue is increased in situations characterized by decreased PPARγ gene expression

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Transgenic overexpression of adipose tissue (AT) transducin-like enhancer of split 3 (TLE3) mimicked peroxisome proliferator-activated receptor gamma (PPARγ) agonists, improving insulin resistance in mice. This study aimed to investigate TLE3 gene expression (qRT-PCR) and protein (Western blot) in subjects with a wide spectrum of obesity and insulin sensitivity and in an independent cohort of obese subjects following surgery-induced weight loss. TLE3 was analyzed in human adipocytes and after treatment with rosiglitazone. Given the findings in humans, TLE3 was also investigated in mice after a high-fat diet (HFD) and in PPARγ knockout mice. Subcutaneous (SC) AT TLE3 was increased in subjects with type 2 diabetes (T2D). In fact, SC TLE3 was associated with increased fasting glucose (r = 0.25, p = 0.015) and S6K1 activity (r = 0.671, p = 0.003), and with decreased Glut4 (r = −0.426, p = 0.006) and IRS-1 expression (−31 %, p = 0.007) and activation (P-IRS-1/IRS-1, −17 %, p = 0.024). TLE3 was preferentially expressed in mature adipocytes and increased during in vitro differentiation in parallel to PPARγ. Weight loss led to improved insulin sensitivity, increased AT PPARγ and decreased TLE3 (−24 %, p = 0.0002), while rosiglitazone administration downregulated TLE3 gene expression in fully differentiated adipocytes (−45 %, p < 0.0001). The concept that TLE3 may act as a homeostatic linchpin in AT was also supported by its increased expression in HFD-fed mice (39 %, p = 0.013) and PPARγ knockout (74 %, p = 0.001). In summary, increased AT TLE3 in subjects with T2D and in AT from HFD-fed and PPARγ knockout mice suggest that TLE3 may play an adaptive regulatory role that improves AT function under decreased PPARγ expression.

Key message

  • TLE3 is expressed in mature adipocytes concomitantly with PPARγ.

  • Subcutaneous adipose TLE3 is increased in T2D patients.

  • Adipose TLE3 is upregulated in genetically ablated PPARγ and HFD-fed mice.

  • TLE3 may be a homeostatic linchpin in insulin resistance and defective PPARγ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9(5):367–377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Qatanani M, Lazar MA (2007) Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev 21(12):1443–1455

    Article  CAS  PubMed  Google Scholar 

  3. Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4(4):263–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. MacDougald OA, Mandrup S (2002) Adipogenesis: forces that tip the scales. Trends Endocrinol Metab 13(1):5–11

    Article  CAS  PubMed  Google Scholar 

  5. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8(10):1224–1234

    Article  CAS  PubMed  Google Scholar 

  6. Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARgamma. Annu Rev Biochem 77:289–312

    Article  CAS  PubMed  Google Scholar 

  7. Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, Koder A, Evans RM (1999) PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 4(4):585–595

    Article  CAS  PubMed  Google Scholar 

  8. Rosen ED, MacDougald OA (2006) Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7(12):885–896

    Article  CAS  PubMed  Google Scholar 

  9. Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM (1999) PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4(4):611–617

    Article  CAS  PubMed  Google Scholar 

  10. Semple RK, Chatterjee VK, O’Rahilly S (2006) PPAR gamma and human metabolic disease. J Clin Invest 116(3):581–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wu Z, Rosen ED, Brun R, Hauser S, Adelmant G, Troy AE, McKeon C, Darlington GJ, Spiegelman BM (1999) Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 3(2):151–158

    Article  CAS  PubMed  Google Scholar 

  12. Artavanis-Tsakonas S, Simpson P (1991) Choosing a cell fate: a view from the Notch locus. Trends Genet 7(11–12):403–408

    Article  CAS  PubMed  Google Scholar 

  13. Campos-Ortega JA (1993) Mechanisms of early neurogenesis in Drosophila melanogaster. J Neurobiol 24(10):1305–1327

    Article  CAS  PubMed  Google Scholar 

  14. Delidakis C, Preiss A, Hartley DA, Artavanis-Tsakonas S (1991) Two genetically and molecularly distinct functions involved in early neurogenesis reside within the Enhancer of split locus of Drosophila melanogaster. Genetics 129(3):803–823

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Villanueva CJ, Waki H, Godio C, Nielsen R, Chou WL, Vargas L, Wroblewski K, Schmedt C, Chao LC, Boyadjian R et al (2011) TLE3 is a dual-function transcriptional coregulator of adipogenesis. Cell Metab 13(4):413–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ortega FJ, Mercader JM, Moreno-Navarrete JM, Sabater M, Pueyo N, Valdes S, Ruiz B, Luche E, Serino M, Naon D et al (2012) Targeting the association of calgranulin B (S100A9) with insulin resistance and type 2 diabetes. J Mol Med (Berl) 91(4):523–534

    Article  Google Scholar 

  17. Moreno-Navarrete JM, Novelle MG, Catalan V, Ortega F, Moreno M, Gomez-Ambrosi J, Xifra G, Serrano M, Guerra E, Ricart W, Fruhbeck G, Dieguez C, Fernandez-Real JM (2014) Insulin resistance modulates iron-related proteins in adipose tissue. Diabetes Care

  18. Karczewska-Kupczewska M, Lelental N, Adamska A, Nikolajuk A, Kowalska I, Gorska M, Zimmermann R, Kornhuber J, Straczkowski M, Lewczuk P (2013) The influence of insulin infusion on the metabolism of amyloid beta peptides in plasma. Alzheimers Dement 9(4):400–405

    Article  PubMed  Google Scholar 

  19. DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237(3):E214–E223

    CAS  PubMed  Google Scholar 

  20. Rodriguez-Cuenca S, Carobbio S, Velagapudi VR, Barbarroja N, Moreno-Navarrete JM, Tinahones FJ, Fernandez-Real JM, Oresic M, Vidal-Puig A (2012) Peroxisome proliferator-activated receptor gamma-dependent regulation of lipolytic nodes and metabolic flexibility. Mol Cell Biol 32(8):1555–1565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Arner P (1995) Differences in lipolysis between human subcutaneous and omental adipose tissues. Ann Med 27(4):435–438

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez-Cuenca S, Carobbio S, Vidal-Puig A (2012) Ablation of Pparg2 impairs lipolysis and reveals murine strain differences in lipolytic responses. FASEB J 26(5):1835–1844

    Article  CAS  PubMed  Google Scholar 

  23. Medina-Gomez G, Virtue S, Lelliott C, Boiani R, Campbell M, Christodoulides C, Perrin C, Jimenez-Linan M, Blount M, Dixon J et al (2005) The link between nutritional status and insulin sensitivity is dependent on the adipocyte-specific peroxisome proliferator-activated receptor-gamma2 isoform. Diabetes 54(6):1706–1716

    Article  CAS  PubMed  Google Scholar 

  24. Villanueva CJ, Vergnes L, Wang J, Drew BG, Hong C, Tu Y, Hu Y, Peng X, Xu F, Saez E et al (2013) Adipose subtype-selective recruitment of TLE3 or Prdm16 by PPARgamma specifies lipid storage versus thermogenic gene programs. Cell Metab 17(3):423–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515

    Article  CAS  PubMed  Google Scholar 

  26. White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283(3):E413–E422

    CAS  PubMed  Google Scholar 

  27. Moreno-Navarrete JM, Ortega F, Sanchez-Garrido MA, Sabater M, Ricart W, Zorzano A, Tena-Sempere M, Fernandez-Real JM (2013) Phosphorylated S6K1 (Thr389) is a molecular adipose tissue marker of altered glucose tolerance. J Nutr Biochem 24(1):32–38

    Article  CAS  PubMed  Google Scholar 

  28. Shepherd PR, Kahn BB (1999) Glucose transporters and insulin action—implications for insulin resistance and diabetes mellitus. N Engl J Med 341(4):248–257

    Article  CAS  PubMed  Google Scholar 

  29. Maggard-Gibbons M, Maglione M, Livhits M, Ewing B, Maher AR, Hu J, Li Z, Shekelle PG (2013) Bariatric surgery for weight loss and glycemic control in nonmorbidly obese adults with diabetes: a systematic review. JAMA 309(21):2250–2261

    Article  CAS  PubMed  Google Scholar 

  30. Ibrahim MM (2010) Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 11(1):11–18

    Article  PubMed  Google Scholar 

  31. Daniels DL, Weis WI (2005) Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol 12(4):364–371

    Article  CAS  PubMed  Google Scholar 

  32. Albrektsen T, Frederiksen KS, Holmes WE, Boel E, Taylor K, Fleckner J (2002) Novel genes regulated by the insulin sensitizer rosiglitazone during adipocyte differentiation. Diabetes 51(4):1042–1051

    Article  CAS  PubMed  Google Scholar 

  33. Camp HS, Whitton AL, Tafuri SR (1999) PPARgamma activators down-regulate the expression of PPARgamma in 3 T3-L1 adipocytes. FEBS Lett 447(2–3):186–190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the technical assistance of Isabel Alonso, Oscar Rovira and Emili LosHuertos (Unit of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona, Hospital Universitari de Girona Dr. Josep Trueta). This study was supported by the Spanish Ministry of Science and Innovation (FIS 2011–00214) and CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn). The CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERobn) is an initiative from the Instituto de Salud Carlos III (ISCIII).

Disclosures

The authors have nothing to disclose.

Author contribution

All authors of this manuscript have directly participated in the execution and analysis of the study. FJO and MS designed the study, analyzed the biochemical variables, performed the statistical analysis, and wrote the manuscript. JMM-N, MG-S, and MS analyzed biochemical variables. JIR-H, GX, and WR obtained the samples, anthropometrical characteristics, and the written consent of participants. SR-C and AV-P provided samples from HFD and PPARγ2-KO mouse models. BP and AV-P provided important intellectual content. JMF-R carried out the conception and coordination of this study and helped with the writing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco José Ortega or José Manuel Fernández-Real.

Additional information

Francisco José Ortega and Marta Serrano contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 473 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega, F.J., Serrano, M., Rodriguez-Cuenca, S. et al. Transducin-like enhancer of split 3 (TLE3) in adipose tissue is increased in situations characterized by decreased PPARγ gene expression. J Mol Med 93, 83–92 (2015). https://doi.org/10.1007/s00109-014-1207-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1207-5

Keywords

Navigation