Skip to main content

Advertisement

Log in

An emerging role of PARK2 in cancer

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

PARK2 (PARKIN) is an E3 ubiquitin ligase involved in multiple signaling pathways and cellular processes. Activity of PARK2 is tightly regulated through inter- and intra-molecular interactions. Dysfunction of PARK2 is associated with the progression of parkinsonism. Notably, frequent PARK2 inactivation has been identified in various human cancers. Park2-deficient mice are more susceptible to tumorigenesis, indicating its crucial role as a tumor suppressor. However, biological studies also show that PARK2 possesses both pro-survival and growth suppressive functions. Here, we summarize the genetic lesions of PARK2 in human cancers and discuss the current knowledge of PARK2 in cancer progression. We further highlight future efforts for the study of PARK2 in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K et al (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305

    Article  CAS  PubMed  Google Scholar 

  2. Wenzel DM, Lissounov A, Brzovic PS, Klevit RE (2011) UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474:105–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G, Rae CS, Schneider DS, Nakamura K, Shiloh MU, Cox JS (2013) The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501:512–516

    Article  CAS  PubMed  Google Scholar 

  4. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  CAS  PubMed  Google Scholar 

  5. Mira MT, Alcais A, Van Thuc N, Moraes MO, Di Flumeri C, Thai VH, Phuong MC, Huong NT, Ba NN, Khoa PX et al (2004) Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 427:636–640

    Article  CAS  PubMed  Google Scholar 

  6. Ali S, Vollaard AM, Widjaja S, Surjadi C, van de Vosse E, van Dissel JT (2006) PARK2/PACRG polymorphisms and susceptibility to typhoid and paratyphoid fever. Clin Exp Immunol 144:425–431

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Alcalay RN, Clark LN, Marder KS, Bradley WE (2012) Lack of association between cancer history and PARKIN genotype: a family based study in PARKIN/Parkinson's families. Genes Chromosomes Cancer 51:1109–1113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sun XD, Liu M, Hao JH, Li DW, Luo YG, Wang XC, Yang YF, Li F, Shui WQ, Chen Q et al (2013) Parkin deficiency contributes to pancreatic tumorigenesis by inducing spindle multipolarity and misorientation. Cell Cycle 12:1133–1141

    Article  CAS  PubMed  Google Scholar 

  9. Tay SP, Yeo CW, Chai C, Chua PJ, Tan HM, Ang AX, Yip DL, Sung JX, Tan PH, Bay BH et al (2010) Parkin enhances the expression of cyclin-dependent kinase 6 and negatively regulates the proliferation of breast cancer cells. J Biol Chem 285:29231–29238

    Article  CAS  PubMed  Google Scholar 

  10. Poulogiannis G, McIntyre RE, Dimitriadi M, Apps JR, Wilson CH, Ichimura K, Luo FJ, Cantley LC, Wyllie AH, Adams DJ et al (2010) PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc Natl Acad Sci U S A 107:15145–15150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Yeo CW, Ng FS, Chai C, Tan JM, Koh GR, Chong YK, Koh LW, Foong CS, Sandanaraj E, Holbrook JD et al (2012) Parkin pathway activation mitigates glioma cell proliferation and predicts patient survival. Cancer Res 72:2543–2553

    Article  CAS  PubMed  Google Scholar 

  12. Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E, Vivanco I, Janakiraman M, Schultz N, Hanrahan AJ, Pao W et al (2010) Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nat Genet 42:77–82

    Article  CAS  PubMed  Google Scholar 

  13. Wang F, Denison S, Lai JP, Philips LA, Montoya D, Kock N, Schule B, Klein C, Shridhar V, Roberts LR et al (2004) Parkin gene alterations in hepatocellular carcinoma. Genes Chromosomes Cancer 40:85–96

    Article  CAS  PubMed  Google Scholar 

  14. Picchio MC, Martin ES, Cesari R, Calin GA, Yendamuri S, Kuroki T, Pentimalli F, Sarti M, Yoder K, Kaiser LR et al (2004) Alterations of the tumor suppressor gene Parkin in non-small cell lung cancer. Clin Cancer Res 10:2720–2724

    Article  CAS  PubMed  Google Scholar 

  15. Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R, McAdams H, Trapasso F, Drusco A, Shimizu M, Mascillo V et al (2003) Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci U S A 100:5956–5961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. West AB, Kapatos G, O'Farrell C, Gonzalez-de-Chavez F, Chiu K, Farrer MJ, Maidment NT (2004) N-myc regulates parkin expression. J Biol Chem 279:28896–28902

    Article  CAS  PubMed  Google Scholar 

  17. Zhang C, Lin M, Wu R, Wang X, Yang B, Levine AJ, Hu W, Feng Z (2011) Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc Natl Acad Sci U S A 108:16259–16264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bouman L, Schlierf A, Lutz AK, Shan J, Deinlein A, Kast J, Galehdar Z, Palmisano V, Patenge N, Berg D et al (2011) Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress. Cell Death Differ 18:769–782

    Article  CAS  PubMed  Google Scholar 

  19. Klinkenberg M, Gispert S, Dominguez-Bautista JA, Braun I, Auburger G, Jendrach M (2012) Restriction of trophic factors and nutrients induces PARKIN expression. Neurogenetics 13:9–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wang HQ, Imai Y, Kataoka A, Takahashi R (2007) Cell type-specific upregulation of parkin in response to ER stress. Antioxid Redox Signal 9:533–542

    Article  CAS  PubMed  Google Scholar 

  21. Kim KY, Stevens MV, Akter MH, Rusk SE, Huang RJ, Cohen A, Noguchi A, Springer D, Bocharov AV, Eggerman TL et al (2011) Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells. J Clin Invest 121:3701–3712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ikeuchi K, Marusawa H, Fujiwara M, Matsumoto Y, Endo Y, Watanabe T, Iwai A, Sakai Y, Takahashi R, Chiba T (2009) Attenuation of proteolysis-mediated cyclin E regulation by alternatively spliced parkin in human colorectal cancers. International journal of cancer Journal international du cancer 125:2029–2035

    Article  CAS  PubMed  Google Scholar 

  23. Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, Ling SC, Sun E, Wancewicz E, Mazur C et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14:459–468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Lagier-Tourenne C, Polymenidou M, Hutt KR, Vu AQ, Baughn M, Huelga SC, Clutario KM, Ling SC, Liang TY, Mazur C et al (2012) Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci 15:1488–1497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol 7(Suppl 1):S12 11–14

    Article  Google Scholar 

  26. Fallon L, Moreau F, Croft BG, Labib N, Gu WJ, Fon EA (2002) Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and postsynaptic densities in brain. J Biol Chem 277:486–491

    Article  CAS  PubMed  Google Scholar 

  27. Trempe JF, Sauve V, Grenier K, Seirafi M, Tang MY, Menade M, Al-Abdul-Wahid S, Krett J, Wong K, Kozlov G et al (2013) Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340:1451–1455

    Article  CAS  PubMed  Google Scholar 

  28. Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, Nguyen L, Shaler T, Walker D, Yang Y, Regnstrom K et al (2013) Structure and function of parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat Commun 4:1982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Spratt DE, Martinez-Torres RJ, Noh YJ, Mercier P, Manczyk N, Barber KR, Aguirre JD, Burchell L, Purkiss A, Walden H et al (2013) A molecular explanation for the recessive nature of parkin-linked Parkinson's disease. Nat Commun 4:1983

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ, Shaw GS, Walden H (2011) Autoregulation of parkin activity through its ubiquitin-like domain. Embo J 30:2853–2867

    Article  CAS  PubMed  Google Scholar 

  31. Lazarou M, Narendra DP, Jin SM, Tekle E, Banerjee S, Youle RJ (2013) PINK1 drives parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J Cell Biol 200:163–172

    Article  CAS  PubMed  Google Scholar 

  32. Ko HS, Lee Y, Shin JH, Karuppagounder SS, Gadad BS, Koleske AJ, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM (2010) Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function. Proc Natl Acad Sci U S A 107:16691–16696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Imam SZ, Zhou Q, Yamamoto A, Valente AJ, Ali SF, Bains M, Roberts JL, Kahle PJ, Clark RA, Li S (2011) Novel regulation of parkin function through c-Abl-mediated tyrosine phosphorylation: implications for Parkinson's disease. J Neurosci 31:157–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Avraham E, Rott R, Liani E, Szargel R, Engelender S (2007) Phosphorylation of parkin by the cyclin-dependent kinase 5 at the linker region modulates its ubiquitin-ligase activity and aggregation. J Biol Chem 282:12842–12850

    Article  CAS  PubMed  Google Scholar 

  35. Yamamoto A, Friedlein A, Imai Y, Takahashi R, Kahle PJ, Haass C (2005) Parkin phosphorylation and modulation of its E3 ubiquitin ligase activity. J Biol Chem 280:3390–3399

    Article  CAS  PubMed  Google Scholar 

  36. Rubio de la Torre E, Luzon-Toro B, Forte-Lago I, Minguez-Castellanos A, Ferrer I, Hilfiker S (2009) Combined kinase inhibition modulates parkin inactivation. Hum Mol Genet 18:809–823

    CAS  PubMed  Google Scholar 

  37. Trempe JF, Chen CX, Grenier K, Camacho EM, Kozlov G, McPherson PS, Gehring K, Fon EA (2009) SH3 domains from a subset of BAR proteins define a Ubl-binding domain and implicate parkin in synaptic ubiquitination. Mol Cell 36:1034–1047

    Article  CAS  PubMed  Google Scholar 

  38. Walden H, Martinez-Torres RJ (2012) Regulation of parkin E3 ubiquitin ligase activity. Cell Mol Life Sci 69:3053–3067

    Article  CAS  PubMed  Google Scholar 

  39. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404

    Article  PubMed  Google Scholar 

  40. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1

    Article  CAS  PubMed  Google Scholar 

  41. Toma MI, Grosser M, Herr A, Aust DE, Meye A, Hoefling C, Fuessel S, Wuttig D, Wirth MP, Baretton GB (2008) Loss of heterozygosity and copy number abnormality in clear cell renal cell carcinoma discovered by high-density affymetrix 10K single nucleotide polymorphism mapping array. Neoplasia 10:634–642

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Gu JA, Ajani JA, Hawk ET, Ye YQ, Lee JH, Bhutani MS, Hofstetter WL, Swisher SG, Wang KK, Wu XF (2010) Genome-wide catalogue of chromosomal aberrations in Barrett's esophagus and esophageal adenocarcinoma: a high-density single nucleotide polymorphism array analysis. Cancer Prev Res 3:1176–1186

    Article  CAS  Google Scholar 

  43. Yin D, Ogawa S, Kawamata N, Tunici P, Finocchiaro G, Eoli M, Ruckert C, Huynh T, Liu GT, Kato M et al (2009) High-resolution genomic copy number profiling of glioblastoma multiforme by single nucleotide polymorphism DNA microarray. Mol Cancer Res 7:665–677

    Article  CAS  PubMed  Google Scholar 

  44. Iwakawa R, Okayama H, Kohno T, Sato-Otsubo A, Ogawa S, Yokota J (2012) Contribution of germline mutations to PARK2 gene inactivation in lung adenocarcinoma. Genes Chromosomes Cancer 51:462–472

    Article  CAS  PubMed  Google Scholar 

  45. Deng N, Goh LK, Wang H, Das K, Tao J, Tan IB, Zhang S, Lee M, Wu J, Lim KH et al (2012) A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut 61:673–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao YJ, Turashvili G, Ding JR, Tse K, Haffari G et al (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486:395–399

    CAS  PubMed  Google Scholar 

  47. Agirre X, Roman-Gomez J, Vazquez I, Jimenez-Velasco A, Garate L, Montiel-Duarte C, Artieda P, Cordeu L, Lahortiga I, Calasanz MJ et al (2006) Abnormal methylation of the common PARK2 and PACRG promoter is associated with downregulation of gene expression in acute lymphoblastic leukemia and chronic myeloid leukemia. Int J Cancer 118:1945–1953

    Article  CAS  PubMed  Google Scholar 

  48. Toma MI, Wuttig D, Kaiser S, Herr A, Weber T, Zastrow S, Koch R, Meinhardt M, Baretton GB, Wirth MP et al (2013) PARK2 and PACRG are commonly downregulated in clear-cell renal cell carcinoma and are associated with aggressive disease and poor clinical outcome. Genes Chromosomes Cancer 52:265–273

    Article  CAS  PubMed  Google Scholar 

  49. Denison SR, Wang F, Becker NA, Schule B, Kock N, Phillips LA, Klein C, Smith DI (2003) Alterations in the common fragile site gene parkin in ovarian and other cancers. Oncogene 22:8370–8378

    Article  CAS  PubMed  Google Scholar 

  50. Letessier A, Garrido-Urbani S, Ginestier C, Fournier G, Esterni B, Monville F, Adelaide J, Geneix J, Xerri L, Dubreuil P et al (2007) Correlated break at PARK2/FRA6E and loss of AF-6/Afadin protein expression are associated with poor outcome in breast cancer. Oncogene 26:298–307

    Article  CAS  PubMed  Google Scholar 

  51. Wang HX, Liu BB, Zhang C, Peng GY, Liu M, Li DW, Gu F, Chen Q, Dong JT, Fu L et al (2009) Parkin regulates paclitaxel sensitivity in breast cancer via a microtubule-dependent mechanism. Journal of Pathology 218:76–85

    Article  CAS  PubMed  Google Scholar 

  52. Denison SR, Callahan G, Becker NA, Phillips LA, Smith DI (2003) Characterization of FRA6E and its potential role in autosomal recessive juvenile parkinsonism and ovarian cancer. Gene Chromosome Canc 38:40–52

    Article  CAS  Google Scholar 

  53. Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C, Bohme GA, Laville M, Pratt J, Corti O, Pradier L et al (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet 12:2277–2291

    Article  CAS  PubMed  Google Scholar 

  54. Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ et al (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278:43628–43635

    Article  CAS  PubMed  Google Scholar 

  55. von Coelln R, Thomas B, Savitt JM, Lim KL, Sasaki M, Hess EJ, Dawson VL, Dawson TM (2004) Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc Natl Acad Sci U S A 101:10744–10749

    Article  Google Scholar 

  56. Perez FA, Palmiter RD (2005) Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci U S A 102:2174–2179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Sato S, Chiba T, Nishiyama S, Kakiuchi T, Tsukada H, Hatano T, Fukuda T, Yasoshima Y, Kai N, Kobayashi K et al (2006) Decline of striatal dopamine release in parkin-deficient mice shown by ex vivo autoradiography. J Neurosci Res 84:1350–1357

    Article  CAS  PubMed  Google Scholar 

  58. Kitao Y, Imai Y, Ozawa K, Kataoka A, Ikeda T, Soda M, Nakimawa K, Kiyama H, Stern DM, Hori O et al (2007) Pael receptor induces death of dopaminergic neurons in the substantia nigra via endoplasmic reticulum stress and dopamine toxicity, which is enhanced under condition of parkin inactivation. Hum Mol Genet 16:50–60

    Article  CAS  PubMed  Google Scholar 

  59. Stichel CC, Zhu XR, Bader V, Linnartz B, Schmidt S, Lubbert H (2007) Mono- and double-mutant mouse models of Parkinson's disease display severe mitochondrial damage. Hum Mol Genet 16:2377–2393

    Article  CAS  PubMed  Google Scholar 

  60. Stephenson SEM, Taylor JM, Lockhart PJ (2012) Parkinson's disease and parkin: insights from Park2 knockout mice. In: Dushanova J (ed). Mechanisms in Parkinson's disease—models and treatments InTech.

  61. Fujiwara M, Marusawa H, Wang HQ, Iwai A, Ikeuchi K, Imai Y, Kataoka A, Nukina N, Takahashi R, Chiba T (2008) Parkin as a tumor suppressor gene for hepatocellular carcinoma. Oncogene 27:6002–6011

    Article  CAS  PubMed  Google Scholar 

  62. Cookson MR (2012) Parkinsonism due to mutations in PINK1, parkin, and DJ-1 and oxidative stress and mitochondrial pathways. Cold Spring Harb Perspect Med 2:a009415

    Article  PubMed  CAS  Google Scholar 

  63. Narendra D, Walker JE, Youle R (2012) Mitochondrial quality control mediated by PINK1 and parkin: links to parkinsonism. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a011338

  64. Ashrafi G, Schwarz TL (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31–42

    Article  CAS  PubMed  Google Scholar 

  65. Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100:15077–15082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. The Journal of clinical investigation 112:1809–1820

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N (2011) Autophagy-deficient mice develop multiple liver tumors. Gene Dev 25:795–800

    Article  CAS  PubMed  Google Scholar 

  68. Yang F, Jiang Q, Zhao J, Ren Y, Sutton MD, Feng J (2005) Parkin stabilizes microtubules through strong binding mediated by three independent domains. J Biol Chem 280:17154–17162

    Article  CAS  PubMed  Google Scholar 

  69. Ren Y, Jiang H, Yang F, Nakaso K, Feng J (2009) Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation. J Biol Chem 284:4009–4017

    Article  CAS  PubMed  Google Scholar 

  70. Ren Y, Zhao J, Feng J (2003) Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci 23:3316–3324

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Moore DJ, Zhang L, Troncoso J, Lee MK, Hattori N, Mizuno Y, Dawson TM, Dawson VL (2005) Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum Mol Genet 14:71–84

    Article  CAS  PubMed  Google Scholar 

  72. Olzmann JA, Li L, Chudaev MV, Chen J, Perez FA, Palmiter RD, Chin LS (2007) Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol 178:1025–1038

    Article  CAS  PubMed  Google Scholar 

  73. Kaverina I, Straube A (2011) Regulation of cell migration by dynamic microtubules. Semin Cell Dev Biol 22:968–974

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Watanabe T, Noritake J, Kaibuchi K (2005) Regulation of microtubules in cell migration. Trends Cell Biol 15:76–83

    Article  CAS  PubMed  Google Scholar 

  75. Staropoli JF, McDermott C, Martinat C, Schulman B, Demireva E, Abeliovich A (2003) Parkin is a component of an SCF-like ubipuitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 37:735–749

    Article  CAS  PubMed  Google Scholar 

  76. Jiang Q, Ren Y, Feng J (2008) Direct binding with histone deacetylase 6 mediates the reversible recruitment of parkin to the centrosome. J Neurosci 28:12993–13002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Zhao J, Ren Y, Jiang Q, Feng J (2003) Parkin is recruited to the centrosome in response to inhibition of proteasomes. J Cell Sci 116:4011–4019

    Article  CAS  PubMed  Google Scholar 

  78. Chen Y, Fang ST, Yeh PC, Yang HH, Chen SY, Chang CJ, Zhai WJ, Chen YC, Juang YL (2012) The C-terminus of PARK2 is required for its self-interaction, solubility and role in the spindle assembly checkpoint. Biochim Biophys Acta 1822:573–580

    Article  CAS  PubMed  Google Scholar 

  79. Liu M, Aneja R, Sun X, Xie S, Wang H, Wu X, Dong JT, Li M, Joshi HC, Zhou J (2008) Parkin regulates Eg5 expression by Hsp70 ubiquitination-dependent inactivation of c-Jun NH2-terminal kinase. J Biol Chem 283:35783–35788

    Article  CAS  PubMed  Google Scholar 

  80. Kuroda Y, Mitsui T, Kunishige M, Shono M, Akaike M, Azuma H, Matsumoto T (2006) Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet 15:883–895

    Article  CAS  PubMed  Google Scholar 

  81. Rothfuss O, Fischer H, Hasegawa T, Maisel M, Leitner P, Miesel F, Sharma M, Bornemann A, Berg D, Gasser T et al (2009) Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair. Hum Mol Genet 18:3832–3850

    Article  CAS  PubMed  Google Scholar 

  82. Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, Troconso JC, Dawson VL, Dawson TM (2011) PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson's disease. Cell 144:689–702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Suen DF, Narendra DP, Tanaka A, Manfredi G, Youle RJ (2010) Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells. Proc Natl Acad Sci U S A 107:11835–11840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25:4647–4662

    Article  CAS  PubMed  Google Scholar 

  85. Chatterjee A, Mambo E, Sidransky D (2006) Mitochondrial DNA mutations in human cancer. Oncogene 25:4663–4674

    Article  CAS  PubMed  Google Scholar 

  86. Zanssen S, Schon EA (2005) Mitochondrial DNA mutations in cancer. PLoS Med 2:e401

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Okatsu K, Oka T, Iguchi M, Imamura K, Kosako H, Tani N, Kimura M, Go E, Koyano F, Funayama M et al (2012) PINK1 autophosphorylation upon membrane potential dissipation is essential for parkin recruitment to damaged mitochondria. Nat Commun 3:1016

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, McBride HM, Park DS, Fon EA (2012) Mitochondrial processing peptidase regulates PINK1 processing, import and parkin recruitment. EMBO Rep 13:378–385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Lazarou M, Jin SM, Kane LA, Youle RJ (2012) Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase parkin. Dev Cell 22:320–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, Burchell L, Walden H, Macartney TJ, Deak M et al (2012) PINK1 is activated by mitochondrial membrane potential depolarization and stimulates parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2:120080

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, Hattori N (2012) PINK1-mediated phosphorylation of the parkin ubiquitin-like domain primes mitochondrial translocation of parkin and regulates mitophagy. Sci Rep 2:1002

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496:372–376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RL, Hess S, Chan DC (2011) Broad activation of the ubiquitin-proteasome system by parkin is critical for mitophagy. Hum Mol Genet 20:1726–1737

    Article  CAS  PubMed  Google Scholar 

  94. Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, LaVoie MJ, Schwarz TL (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:893–906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. Journal of Cell Biology 183:795–803

    Article  CAS  PubMed  Google Scholar 

  96. Van Humbeeck C, Cornelissen T, Hofkens H, Mandemakers W, Gevaert K, De Strooper B, Vandenberghe W (2011) Parkin interacts with Ambra1 to induce mitophagy. J Neurosci 31:10249–10261

    Article  PubMed  CAS  Google Scholar 

  97. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131

    Article  CAS  PubMed  Google Scholar 

  98. Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ (2010) p62/SQSTM1 is required for parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6:1090–1106

    Article  CAS  PubMed  Google Scholar 

  99. Gogvadze V, Orrenius S, Zhivotovsky B (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 18:165–173

    Article  CAS  PubMed  Google Scholar 

  100. Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J, Shen J (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279:18614–18622

    Article  CAS  PubMed  Google Scholar 

  101. Berger AK, Cortese GP, Amodeo KD, Weihofen A, Letai A, LaVoie MJ (2009) Parkin selectively alters the intrinsic threshold for mitochondrial cytochrome c release. Hum Mol Genet 18:4317–4328

    Article  CAS  PubMed  Google Scholar 

  102. Darios F, Corti O, Lucking CB, Hampe C, Muriel MP, Abbas N, Gu WJ, Hirsch EC, Rooney T, Ruberg M et al (2003) Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet 12:517–526

    Article  CAS  PubMed  Google Scholar 

  103. Johnson BN, Berger AK, Cortese GP, LaVoie MJ (2012) The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. Proc Natl Acad Sci U S A 109:6283–6288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Ekholm-Reed S, Goldberg MS, Schlossmacher MG, Reed SI (2013) Parkin-dependent degradation of the f-box protein fbw7beta promotes neuronal survival in response to oxidative stress by stabilizing mcl-1. Mol Cell Biol 33:3627–3643

    Article  CAS  PubMed  Google Scholar 

  105. Chen D, Gao F, Li B, Wang HF, Xu YX, Zhu CQ, Wang GH (2010) Parkin mono-ubiquitinates Bcl-2 and regulates autophagy. J Biol Chem 285:38214–38223

    Article  CAS  PubMed  Google Scholar 

  106. Kahns S, Lykkebo S, Jakobsen LD, Nielsen MS, Jensen PH (2002) Caspase-mediated parkin cleavage in apoptotic cell death. J Biol Chem 277:15303–15308

    Article  CAS  PubMed  Google Scholar 

  107. Kahns S, Kalai M, Jakobsen LD, Clark BF, Vandenabeele P, Jensen PH (2003) Caspase-1 and caspase-8 cleave and inactivate cellular parkin. J Biol Chem 278:23376–23380

    Article  CAS  PubMed  Google Scholar 

  108. Lee K, Lee MH, Kang YW, Rhee KJ, Kim TU, Kim YS (2012) Parkin induces apoptotic cell death in TNF-alpha-treated cervical cancer cells. BMB Rep 45:526–531

    Article  CAS  PubMed  Google Scholar 

  109. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  110. Periquet M, Corti O, Jacquier S, Brice A (2005) Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function. J Neurochem 95:1259–1276

    Article  CAS  PubMed  Google Scholar 

  111. Davison EJ, Pennington K, Hung CC, Peng JH, Rafiq R, Ostareck-Lederer A, Ostareck DH, Ardley HC, Banks RE, Robinson PA (2009) Proteomic analysis of increased parkin expression and its interactants provides evidence for a role in modulation of mitochondrial function. Proteomics 9:4284–4297

    Article  CAS  PubMed  Google Scholar 

  112. Xun Z, Kaufman TC, Clemmer DE (2009) Stable isotope labeling and label-free proteomics of Drosophila parkin null mutants. J Proteome Res 8:4500–4510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Greene JC, Whitworth AJ, Andrews LA, Parker TJ, Pallanck LJ (2005) Genetic and genomic studies of Drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis. Hum Mol Genet 14:799–811

    Article  CAS  PubMed  Google Scholar 

  114. Pesah Y, Pham T, Burgess H, Middlebrooks B, Verstreken P, Zhou Y, Harding M, Bellen H, Mardon G (2004) Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 131:2183–2194

    Article  CAS  PubMed  Google Scholar 

  115. Saini N, Oelhafen S, Hua H, Georgiev O, Schaffner W, Bueler H (2010) Extended lifespan of Drosophila parkin mutants through sequestration of redox-active metals and enhancement of anti-oxidative pathways. Neurobiol Dis 40:82–92

    Article  CAS  PubMed  Google Scholar 

  116. Yu F, Zhou J (2008) Parkin is ubiquitinated by Nrdp1 and abrogates Nrdp1-induced oxidative stress. Neurosci Lett 440:4–8

    Article  CAS  PubMed  Google Scholar 

  117. Hyun DH, Lee M, Hattori N, Kubo S, Mizuno Y, Halliwell B, Jenner P (2002) Effect of wild-type or mutant parkin on oxidative damage, nitric oxide, antioxidant defenses, and the proteasome. J Biol Chem 277:28572–28577

    Article  CAS  PubMed  Google Scholar 

  118. Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, Kamphorst JJ, Chen G, Lemons JM, Karantza V et al (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Gene Dev 25:460–470

    Article  CAS  PubMed  Google Scholar 

  119. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A 107:8788–8793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. LaVoie MJ, Cortese GP, Ostaszewski BL, Schlossmacher MG (2007) The effects of oxidative stress on parkin and other E3 ligases. J Neurochem 103:2354–2368

    Article  CAS  PubMed  Google Scholar 

  121. Winklhofer KF, Henn IH, Kay-Jackson PC, Heller U, Tatzelt J (2003) Inactivation of parkin by oxidative stress and C-terminal truncations: a protective role of molecular chaperones. J Biol Chem 278:47199–47208

    Article  CAS  PubMed  Google Scholar 

  122. Meng F, Yao D, Shi Y, Kabakoff J, Wu W, Reicher J, Ma Y, Moosmann B, Masliah E, Lipton SA et al (2011) Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation. Mol Neurodegener 6:34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Wong ES, Tan JM, Wang C, Zhang Z, Tay SP, Zaiden N, Ko HS, Dawson VL, Dawson TM, Lim KL (2007) Relative sensitivity of parkin and other cysteine-containing enzymes to stress-induced solubility alterations. J Biol Chem 282:12310–12318

    Article  CAS  PubMed  Google Scholar 

  124. Fallon L, Belanger CM, Corera AT, Kontogiannea M, Regan-Klapisz E, Moreau F, Voortman J, Haber M, Rouleau G, Thorarinsdottir T et al (2006) A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat Cell Biol 8:834–842

    Article  CAS  PubMed  Google Scholar 

  125. Cha GH, Kim S, Park J, Lee E, Kim M, Lee SB, Kim JM, Chung J, Cho KS (2005) Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc Natl Acad Sci U S A 102:10345–10350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Hwang S, Kim D, Choi G, An SW, Hong YK, Suh YS, Lee MJ, Cho KS (2010) Parkin suppresses c-Jun N-terminal kinase-induced cell death via transcriptional regulation in Drosophila. Mol Cells 29:575–580

    Article  CAS  PubMed  Google Scholar 

  127. Henn IH, Bouman L, Schlehe JS, Schlierf A, Schramm JE, Wegener E, Nakaso K, Culmsee C, Berninger B, Krappmann D et al (2007) Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB signaling. J Neurosci 27:1868–1878

    Article  CAS  PubMed  Google Scholar 

  128. Rawal N, Corti O, Sacchetti P, Ardilla-Osorio H, Sehat B, Brice A, Arenas E (2009) Parkin protects dopaminergic neurons from excessive Wnt/beta-catenin signaling. Biochem Bioph Res Co 388:473–478

    Article  CAS  Google Scholar 

  129. Ren Y, Jiang H, Ma D, Nakaso K, Feng J (2011) Parkin degrades estrogen-related receptors to limit the expression of monoamine oxidases. Hum Mol Genet 20:1074–1083

    Article  CAS  PubMed  Google Scholar 

  130. Vos M, Esposito G, Edirisinghe JN, Vilain S, Haddad DM, Slabbaert JR, Van Meensel S, Schaap O, De Strooper B, Meganathan R et al (2012) Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 336:1306–1310

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Chen Ye for the kind help in generation figures. This work was funded by the Singapore Ministry of Health's National Medical Research Council (NMRC) under its Singapore Translational Research (STaR) Investigator Award to H. Phillip Koeffler, NMRC Individual Research Grant (NMRC/1311/2011), and NIH grant R01CA026038-23. This work was also partially supported by grants from the Natural Science Foundation of China (81071788, 81272956).

Conflict of interest

The authors declare no conflict of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to De-chen Lin or Dong Yin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 268 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Lin, Dc., Yin, D. et al. An emerging role of PARK2 in cancer. J Mol Med 92, 31–42 (2014). https://doi.org/10.1007/s00109-013-1107-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1107-0

Keywords

Navigation