Skip to main content

Advertisement

Log in

Molecular biology for formyl peptide receptors in human diseases

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Leukocytes accumulate at sites of inflammation and immunological reaction in response to locally existing chemotactic mediators. The first chemotactic factors structurally defined were N-formyl peptides. Subsequently, numerous ligands were identified to activate formyl peptide receptors (FPRs) that belong to the seven-transmembrane G protein-coupled receptor superfamily. FPRs interact with this menagerie of structurally diverse pro- and anti-inflammatory ligands to possess important regulatory effects in multiple diseases, including inflammation, amyloidosis, Alzheimer’s disease, prion disease, acquired immunodeficiency syndrome, obesity, diabetes, and cancer. How these receptors recognize diverse ligands and how they contribute to disease pathogenesis and host defense are basic questions currently under investigation that would open up new avenues for the future management of inflammation-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schiffmann E, Showell HV, Corcoran BA, Ward PA, Smith E, Becker EL (1975) The isolation and partial characterization of neutrophil chemotactic factors from Escherichia coli. J Immunol 114:1831–1837

    PubMed  CAS  Google Scholar 

  2. Schiffmann E, Corcoran BA, Wahl SM (1975) N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A 72:1059–1062

    Article  PubMed  CAS  Google Scholar 

  3. Marasco WA, Phan SH, Krutzsch H, Showell HJ, Feltner DE, Nairn R, Becker EL, Ward PA (1984) Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J Biol Chem 259:5430–5439

    PubMed  CAS  Google Scholar 

  4. Showell HJ, Freer RJ, Zigmond SH, Schiffmann E, Aswanikumar S, Corcoran B, Becker EL (1976) The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal secretion for neutrophils. J Exp Med 143:1154–1169

    Article  PubMed  CAS  Google Scholar 

  5. Bao L, Gerard NP, Eddy RL Jr, Shows TB, Gerard C (1992) Mapping of genes for the human C5a receptor (C5AR), human FMLP receptor (FPR), and two FMLP receptor homologue orphan receptors (FPRH1, FPRH2) to chromosome 19. Genomics 13:437–440

    Article  PubMed  CAS  Google Scholar 

  6. Ye RD, Cavanagh SL, Quehenberger O, Prossnitz ER, Cochrane CG (1992) Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor. Biochem Biophys Res Commun 184:582–589

    Article  PubMed  CAS  Google Scholar 

  7. Durstin M, Gao JL, Tiffany HL, McDermott D, Murphy PM (1994) Differential expression of members of the N-formylpeptide receptor gene cluster in human phagocytes. Biochem Biophys Res Commun 201:174–179

    Article  PubMed  CAS  Google Scholar 

  8. Yang D, Chen Q, Le Y, Wang JM, Oppenheim JJ (2001) Differential regulation of formyl peptide receptor-like 1 expression during the differentiation of monocytes to dendritic cells and macrophages. J Immunol 166:4092–4098

    PubMed  CAS  Google Scholar 

  9. Betten A, Bylund J, Christophe T, Boulay F, Romero A, Hellstrand K, Dahlgren C (2001) A proinflammatory peptide from Helicobacter pylori activates monocytes to induce lymphocyte dysfunction and apoptosis. J Clin Invest 108:1221–1228

    PubMed  CAS  Google Scholar 

  10. Christophe T, Karlsson A, Dugave C, Rabiet MJ, Boulay F, Dahlgren C (2001) The synthetic peptide Trp-Lys-Tyr-Met-Val-Met-NH2 specifically activates neutrophils through FPRL1/lipoxin A4 receptors and is an agonist for the orphan monocyte-expressed chemoattractant receptor FPRL2. J Biol Chem 276:21585–21593

    Article  PubMed  CAS  Google Scholar 

  11. Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM (2009) International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev 61:119–161

    Article  PubMed  CAS  Google Scholar 

  12. Chiang N, Serhan CN, Dahlen SE, Drazen JM, Hay DW, Rovati GE, Shimizu T, Yokomizo T, Brink C (2006) The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacol Rev 58:463–487

    Article  PubMed  CAS  Google Scholar 

  13. Gao JL, Murphy PM (1993) Species and subtype variants of the N-formyl peptide chemotactic receptor reveal multiple important functional domains. J Biol Chem 268:25395–25401

    PubMed  CAS  Google Scholar 

  14. Maestes DC, Potter RM, Prossnitz ER (1999) Differential phosphorylation paradigms dictate desensitization and internalization of the N-formyl peptide receptor. J Biol Chem 274:29791–29795

    Article  PubMed  CAS  Google Scholar 

  15. Wenzel-Seifert K, Arthur JM, Liu HY, Seifert R (1999) Quantitative analysis of formyl peptide receptor coupling to g(i)alpha(1), g(i)alpha(2), and g(i)alpha(3). J Biol Chem 274:33259–33266

    Article  PubMed  CAS  Google Scholar 

  16. Perez HD, Holmes R, Vilander LR, Adams RR, Manzana W, Jolley D, Andrews WH (1993) Formyl peptide receptor chimeras define domains involved in ligand binding. J Biol Chem 268:2292–2295

    PubMed  CAS  Google Scholar 

  17. Quehenberger O, Prossnitz ER, Cavanagh SL, Cochrane CG, Ye RD (1993) Multiple domains of the N-formyl peptide receptor are required for high-affinity ligand binding. Construction and analysis of chimeric N-formyl peptide receptors. J Biol Chem 268:18167–18175

    PubMed  CAS  Google Scholar 

  18. Lala A, Gwinn M, De Nardin E (1999) Human formyl peptide receptor function role of conserved and nonconserved charged residues. Eur J Biochem 264:495–499

    Article  PubMed  CAS  Google Scholar 

  19. Villanueva MS, Beckers CJ, Pamer EG (1994) Infection with Listeria monocytogenes impairs sialic acid addition to host cell glycoproteins. J Exp Med 180:2137–2145

    Article  PubMed  CAS  Google Scholar 

  20. Kim JW, Cunningham JM (1993) N-linked glycosylation of the receptor for murine ecotropic retroviruses is altered in virus-infected cells. J Biol Chem 268:16316–16320

    PubMed  CAS  Google Scholar 

  21. Chiang N, Fierro IM, Gronert K, Serhan CN (2000) Activation of lipoxin A(4) receptors by aspirin-triggered lipoxins and select peptides evokes ligand-specific responses in inflammation. J Exp Med 191:1197–1208

    Article  PubMed  CAS  Google Scholar 

  22. Li Y, Cai L, Wang H, Wu P, Gu W, Chen Y, Hao H, Tang K, Yi P, Liu M et al (2011) Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-2. Oncogene 30:3887–3899

    Article  PubMed  CAS  Google Scholar 

  23. Ali H, Richardson RM, Haribabu B, Snyderman R (1999) Chemoattractant receptor cross-desensitization. J Biol Chem 274:6027–6030

    Article  PubMed  CAS  Google Scholar 

  24. Ferguson SS, Barak LS, Zhang J, Caron MG (1996) G-protein-coupled receptor regulation: role of G-protein-coupled receptor kinases and arrestins. Can J Physiol Pharmacol 74:1095–1110

    Article  PubMed  CAS  Google Scholar 

  25. Luttrell LM, Daaka Y, Lefkowitz RJ (1999) Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 11:177–183

    Article  PubMed  CAS  Google Scholar 

  26. Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG (1999) Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J Biol Chem 274:32248–32257

    Article  PubMed  CAS  Google Scholar 

  27. Ali H, Richardson RM, Tomhave ED, Didsbury JR, Snyderman R (1993) Differences in phosphorylation of formylpeptide and C5a chemoattractant receptors correlate with differences in desensitization. J Biol Chem 268:24247–24254

    PubMed  CAS  Google Scholar 

  28. Tardif M, Mery L, Brouchon L, Boulay F (1993) Agonist-dependent phosphorylation of N-formylpeptide and activation peptide from the fifth component of C (C5a) chemoattractant receptors in differentiated HL60 cells. J Immunol 150:3534–3545

    PubMed  CAS  Google Scholar 

  29. Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692

    Article  PubMed  CAS  Google Scholar 

  30. Prossnitz ER, Gilbert TL, Chiang S, Campbell JJ, Qin S, Newman W, Sklar LA, Ye RD (1999) Multiple activation steps of the N-formyl peptide receptor. Biochemistry 38:2240–2247

    Article  PubMed  CAS  Google Scholar 

  31. Prossnitz ER (1997) Desensitization of N-formylpeptide receptor-mediated activation is dependent upon receptor phosphorylation. J Biol Chem 272:15213–15219

    Article  PubMed  CAS  Google Scholar 

  32. Li YS, Wu P, Zhou XY, Chen JG, Cai L, Wang F, Xu LM, Zhang XL, Chen Y, Liu SJ et al (2008) Formyl-peptide receptor like 1: a potent mediator of the Ca2+ release-activated Ca2+ current ICRAC. Arch Biochem Biophys 478:110–118

    Article  PubMed  CAS  Google Scholar 

  33. Liu M, Chen K, Yoshimura T, Liu Y, Gong W, Wang A, Gao JL, Murphy PM, Wang JM (2012) Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes. Sci Rep 2:786

    PubMed  Google Scholar 

  34. Gao JL, Lee EJ, Murphy PM (1999) Impaired antibacterial host defense in mice lacking the N-formylpeptide receptor. J Exp Med 189:657–662

    Article  PubMed  CAS  Google Scholar 

  35. Kim SD, Kim YK, Lee HY, Kim YS, Jeon SG, Baek SH, Song DK, Ryu SH, Bae YS (2010) The agonists of formyl peptide receptors prevent development of severe sepsis after microbial infection. J Immunol 185:4302–4310

    Article  PubMed  CAS  Google Scholar 

  36. Yang D, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192:1069–1074

    Article  PubMed  CAS  Google Scholar 

  37. Dufton N, Hannon R, Brancaleone V, Dalli J, Patel HB, Gray M, D'Acquisto F, Buckingham JC, Perretti M, Flower RJ (2010) Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation. J Immunol 184:2611–2619

    Article  PubMed  CAS  Google Scholar 

  38. Ernst S, Lange C, Wilbers A, Goebeler V, Gerke V, Rescher U (2004) An annexin 1 N-terminal peptide activates leukocytes by triggering different members of the formyl peptide receptor family. J Immunol 172:7669–7676

    PubMed  CAS  Google Scholar 

  39. Perretti M (2003) The annexin 1 receptor(s): is the plot unravelling? Trends Pharmacol Sci 24:574–579

    Article  PubMed  CAS  Google Scholar 

  40. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CC, Beck PL, Muruve DA, Kubes P (2010) Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330:362–366

    Article  PubMed  CAS  Google Scholar 

  41. Chen K, Le Y, Liu Y, Gong W, Ying G, Huang J, Yoshimura T, Tessarollo L, Wang JM (2010) A critical role for the g protein-coupled receptor mFPR2 in airway inflammation and immune responses. J Immunol 184:3331–3335

    Article  PubMed  CAS  Google Scholar 

  42. Krishnamoorthy S, Recchiuti A, Chiang N, Yacoubian S, Lee CH, Yang R, Petasis NA, Serhan CN (2010) Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc Natl Acad Sci U S A 107:1660–1665

    Article  PubMed  CAS  Google Scholar 

  43. Goh J, Baird AW, O'Keane C, Watson RW, Cottell D, Bernasconi G, Petasis NA, Godson C, Brady HR, MacMathuna P (2001) Lipoxin A(4) and aspirin-triggered 15-epi-lipoxin A(4) antagonize TNF-alpha-stimulated neutrophil-enterocyte interactions in vitro and attenuate TNF-alpha-induced chemokine release and colonocyte apoptosis in human intestinal mucosa ex vivo. J Immunol 167:2772–2780

    PubMed  CAS  Google Scholar 

  44. Sodin-Semrl S, Taddeo B, Tseng D, Varga J, Fiore S (2000) Lipoxin A4 inhibits IL-1 beta-induced IL-6, IL-8, and matrix metalloproteinase-3 production in human synovial fibroblasts and enhances synthesis of tissue inhibitors of metalloproteinases. J Immunol 164:2660–2666

    PubMed  CAS  Google Scholar 

  45. Wu SH, Lu C, Dong L, Zhou GP, He ZG, Chen ZQ (2005) Lipoxin A4 inhibits TNF-alpha-induced production of interleukins and proliferation of rat mesangial cells. Kidney Int 68:35–46

    Article  PubMed  CAS  Google Scholar 

  46. Sun YP, Oh SF, Uddin J, Yang R, Gotlinger K, Campbell E, Colgan SP, Petasis NA, Serhan CN (2007) Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J Biol Chem 282:9323–9334

    Article  PubMed  CAS  Google Scholar 

  47. Chiang N, Fredman G, Backhed F, Oh SF, Vickery T, Schmidt BA, Serhan CN (2012) Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484:524–528

    Article  PubMed  CAS  Google Scholar 

  48. Aliberti J, Hieny S, Reis e Sousa C, Serhan CN, Sher A (2002) Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nat Immunol 3:76–82

    Article  PubMed  CAS  Google Scholar 

  49. Levy BD, De Sanctis GT, Devchand PR, Kim E, Ackerman K, Schmidt BA, Szczeklik W, Drazen JM, Serhan CN (2002) Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A(4). Nat Med 8:1018–1023

    Article  PubMed  CAS  Google Scholar 

  50. Jozsef L, Zouki C, Petasis NA, Serhan CN, Filep JG (2002) Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit peroxynitrite formation, NF-kappa B and AP-1 activation, and IL-8 gene expression in human leukocytes. Proc Natl Acad Sci U S A 99:13266–13271

    Article  PubMed  CAS  Google Scholar 

  51. Nascimento-Silva V, Arruda MA, Barja-Fidalgo C, Villela CG, Fierro IM (2005) Novel lipid mediator aspirin-triggered lipoxin A4 induces heme oxygenase-1 in endothelial cells. Am J Physiol Cell Physiol 289:C557–C563

    Article  PubMed  CAS  Google Scholar 

  52. Souza DG, Fagundes CT, Amaral FA, Cisalpino D, Sousa LP, Vieira AT, Pinho V, Nicoli JR, Vieira LQ, Fierro IM et al (2007) The required role of endogenously produced lipoxin A4 and annexin-1 for the production of IL-10 and inflammatory hyporesponsiveness in mice. J Immunol 179:8533–8543

    PubMed  CAS  Google Scholar 

  53. Rodgers K, McMahon B, Mitchell D, Sadlier D, Godson C (2005) Lipoxin A4 modifies platelet-derived growth factor-induced pro-fibrotic gene expression in human renal mesangial cells. Am J Pathol 167:683–694

    Article  PubMed  CAS  Google Scholar 

  54. El Kebir D, Jozsef L, Khreiss T, Pan W, Petasis NA, Serhan CN, Filep JG (2007) Aspirin-triggered lipoxins override the apoptosis-delaying action of serum amyloid A in human neutrophils: a novel mechanism for resolution of inflammation. J Immunol 179:616–622

    PubMed  CAS  Google Scholar 

  55. Serhan CN (2007) Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol 25:101–137

    Article  PubMed  CAS  Google Scholar 

  56. Glenner GG (1980) Amyloid deposits and amyloidosis. The beta-fibrilloses (first of two parts). N Engl J Med 302:1283–1292

    Article  PubMed  CAS  Google Scholar 

  57. Stone MJ (1990) Amyloidosis: a final common pathway for protein deposition in tissues. Blood 75:531–545

    PubMed  CAS  Google Scholar 

  58. Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer's disease. Nature 399:A23–A31

    Article  PubMed  CAS  Google Scholar 

  59. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL et al (2000) Inflammation and Alzheimer's disease. Neurobiol Aging 21:383–421

    Article  PubMed  CAS  Google Scholar 

  60. Rogers J (1995) Inflammation as a pathogenic mechanism in Alzheimer's disease. Arzneimittelforschung 45:439–442

    PubMed  CAS  Google Scholar 

  61. Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, Tran T, Ubeda O, Ashe KH, Frautschy SA et al (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. J Neurosci 20:5709–5714

    PubMed  CAS  Google Scholar 

  62. Yazawa H, Yu ZX, Le Takeda Y, Gong W, Ferrans VJ, Oppenheim JJ, Li CC, Wang JM (2001) Beta amyloid peptide (Abeta42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages. FASEB J 15:2454–2462

    Article  PubMed  CAS  Google Scholar 

  63. Iribarren P, Chen K, Hu J, Gong W, Cho EH, Lockett S, Uranchimeg B, Wang JM (2005) CpG-containing oligodeoxynucleotide promotes microglial cell uptake of amyloid beta 1–42 peptide by up-regulating the expression of the G-protein- coupled receptor mFPR2. FASEB J 19:2032–2034

    PubMed  CAS  Google Scholar 

  64. Chen K, Iribarren P, Hu J, Chen J, Gong W, Cho EH, Lockett S, Dunlop NM, Wang JM (2006) Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid beta peptide. J Biol Chem 281:3651–3659

    Article  PubMed  CAS  Google Scholar 

  65. Kong Y, Ruan L, Qian L, Liu X, Le Y (2010) Norepinephrine promotes microglia to uptake and degrade amyloid beta peptide through upregulation of mouse formyl peptide receptor 2 and induction of insulin-degrading enzyme. J Neurosci 30:11848–11857

    Article  PubMed  CAS  Google Scholar 

  66. Maderna P, Cottell DC, Toivonen T, Dufton N, Dalli J, Perretti M, Godson C (2010) FPR2/ALX receptor expression and internalization are critical for lipoxin A4 and annexin-derived peptide-stimulated phagocytosis. FASEB J 24:4240–4249

    Article  PubMed  CAS  Google Scholar 

  67. Hashimoto Y, Niikura T, Ito Y, Sudo H, Hata M, Arakawa E, Abe Y, Kita Y, Nishimoto I (2001) Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer's disease-relevant insults. J Neurosci 21:9235–9245

    PubMed  CAS  Google Scholar 

  68. Harada M, Habata Y, Hosoya M, Nishi K, Fujii R, Kobayashi M, Hinuma S (2004) N-Formylated humanin activates both formyl peptide receptor-like 1 and 2. Biochem Biophys Res Commun 324:255–261

    Article  PubMed  CAS  Google Scholar 

  69. Ying G, Iribarren P, Zhou Y, Gong W, Zhang N, Yu ZX, Le Y, Cui Y, Wang JM (2004) Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like-1 as a functional receptor. J Immunol 172:7078–7085

    PubMed  CAS  Google Scholar 

  70. Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95:13363–13383

    Article  PubMed  CAS  Google Scholar 

  71. Perry VH, Bolton SJ, Anthony DC, Betmouni S (1998) The contribution of inflammation to acute and chronic neurodegeneration. Res Immunol 149:721–725

    Article  PubMed  CAS  Google Scholar 

  72. Brown DR, Kretzschmar HA (1997) Microglia and prion disease: a review. Histol Histopathol 12:883–892

    PubMed  CAS  Google Scholar 

  73. Le Y, Yazawa H, Gong W, Yu Z, Ferrans VJ, Murphy PM, Wang JM (2001) The neurotoxic prion peptide fragment PrP(106–126) is a chemotactic agonist for the G protein-coupled receptor formyl peptide receptor-like 1. J Immunol 166:1448–1451

    PubMed  CAS  Google Scholar 

  74. Ueda H, Howard OM, Grimm MC, Su SB, Gong W, Evans G, Ruscetti FW, Oppenheim JJ, Wang JM (1998) HIV-1 envelope gp41 is a potent inhibitor of chemoattractant receptor expression and function in monocytes. J Clin Invest 102:804–812

    Article  PubMed  CAS  Google Scholar 

  75. Wang JM, Ueda H, Howard OM, Grimm MC, Chertov O, Gong X, Gong W, Resau JH, Broder CC, Evans G et al (1998) HIV-1 envelope gp120 inhibits the monocyte response to chemokines through CD4 signal-dependent chemokine receptor down-regulation. J Immunol 161:4309–4317

    PubMed  CAS  Google Scholar 

  76. Dragic T (2001) An overview of the determinants of CCR5 and CXCR4 co-receptor function. J Gen Virol 82:1807–1814

    PubMed  CAS  Google Scholar 

  77. Nara PL, Garrity RR, Goudsmit J (1991) Neutralization of HIV-1: a paradox of humoral proportions. FASEB J 5:2437–2455

    PubMed  CAS  Google Scholar 

  78. Shen W, Li B, Wetzel MA, Rogers TJ, Henderson EE, Su SB, Gong W, Le Y, Sargeant R, Dimitrov DS et al (2000) Down-regulation of the chemokine receptor CCR5 by activation of chemotactic formyl peptide receptor in human monocytes. Blood 96:2887–2894

    PubMed  CAS  Google Scholar 

  79. Deng X, Ueda H, Su SB, Gong W, Dunlop NM, Gao JL, Murphy PM, Wang JM (1999) A synthetic peptide derived from human immunodeficiency virus type 1 gp120 downregulates the expression and function of chemokine receptors CCR5 and CXCR4 in monocytes by activating the 7-transmembrane G-protein-coupled receptor FPRL1/LXA4R. Blood 94:1165–1173

    PubMed  CAS  Google Scholar 

  80. Shen W, Proost P, Li B, Gong W, Le Y, Sargeant R, Murphy PM, Van Damme J, Wang JM (2000) Activation of the chemotactic peptide receptor FPRL1 in monocytes phosphorylates the chemokine receptor CCR5 and attenuates cell responses to selected chemokines. Biochem Biophys Res Commun 272:276–283

    Article  PubMed  CAS  Google Scholar 

  81. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed  CAS  Google Scholar 

  82. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karin M (2005) IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 11:191–198

    Article  PubMed  CAS  Google Scholar 

  83. Gonzalez-Periz A, Horrillo R, Ferre N, Gronert K, Dong B, Moran-Salvador E, Titos E, Martinez-Clemente M, Lopez-Parra M, Arroyo V et al (2009) Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: a role for resolvins and protectins. FASEB J 23:1946–1957

    Article  PubMed  CAS  Google Scholar 

  84. White PJ, Arita M, Taguchi R, Kang JX, Marette A (2010) Transgenic restoration of long-chain n-3 fatty acids in insulin target tissues improves resolution capacity and alleviates obesity-linked inflammation and insulin resistance in high-fat-fed mice. Diabetes 59:3066–3073

    Article  PubMed  CAS  Google Scholar 

  85. Hellmann J, Tang Y, Kosuri M, Bhatnagar A, Spite M (2011) Resolvin D1 decreases adipose tissue macrophage accumulation and improves insulin sensitivity in obese-diabetic mice. FASEB J 25:2399–2407

    Article  PubMed  CAS  Google Scholar 

  86. Balkwill F, Mantovani A (2010) Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther 87:401–406

    Article  PubMed  CAS  Google Scholar 

  87. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  88. Le Y, Murphy PM, Wang JM (2002) Formyl-peptide receptors revisited. Trends Immunol 23:541–548

    Article  PubMed  CAS  Google Scholar 

  89. Zhou Y, Bian X, Le Y, Gong W, Hu J, Zhang X, Wang L, Iribarren P, Salcedo R, Howard OM et al (2005) Formylpeptide receptor FPR and the rapid growth of malignant human gliomas. J Natl Cancer Inst 97:823–835

    Article  PubMed  CAS  Google Scholar 

  90. Yang Y, Liu Y, Yao X, Ping Y, Jiang T, Liu Q, Xu S, Huang J, Mou H, Gong W et al (2011) Annexin 1 released by necrotic human glioblastoma cells stimulates tumor cell growth through the formyl peptide receptor 1. Am J Pathol 179:1504–1512

    Article  PubMed  CAS  Google Scholar 

  91. Huang J, Hu J, Bian X, Chen K, Gong W, Dunlop NM, Howard OM, Wang JM (2007) Transactivation of the epidermal growth factor receptor by formylpeptide receptor exacerbates the malignant behavior of human glioblastoma cells. Cancer Res 67:5906–5913

    Article  PubMed  CAS  Google Scholar 

  92. Kim JE, Kim HJ, Choi JM, Lee KH, Kim TY, Cho BK, Jung JY, Chung KY, Cho D, Park HJ (2010) The antimicrobial peptide human cationic antimicrobial protein-18/cathelicidin LL-37 as a putative growth factor for malignant melanoma. Br J Dermatol 163:959–967

    Article  PubMed  CAS  Google Scholar 

  93. Malle E, Sodin-Semrl S, Kovacevic A (2009) Serum amyloid A: an acute-phase protein involved in tumour pathogenesis. Cell Mol Life Sci 66:9–26

    Article  PubMed  CAS  Google Scholar 

  94. Zonder JA, Barlogie B, Durie BG, McCoy J, Crowley J, Hussein MA (2006) Thrombotic complications in patients with newly diagnosed multiple myeloma treated with lenalidomide and dexamethasone: benefit of aspirin prophylaxis. Blood 108:403, author reply 404

    Article  PubMed  CAS  Google Scholar 

  95. Perretti M, Chiang N, La M, Fierro IM, Marullo S, Getting SJ, Solito E, Serhan CN (2002) Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nat Med 8:1296–1302

    Article  PubMed  CAS  Google Scholar 

  96. Serhan CN, Takano T, Clish CB, Gronert K, Petasis N (1999) Aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogs inhibit neutrophil-mediated changes in vascular permeability. Adv Exp Med Biol 469:287–293

    Article  PubMed  CAS  Google Scholar 

  97. Chen Y, Hao H, He S, Cai L, Li Y, Hu S, Ye D, Hoidal J, Wu P, Chen X (2010) Lipoxin A4 and its analogue suppress the tumor growth of transplanted H22 in mice: the role of antiangiogenesis. Mol Cancer Ther 9:2164–2174

    Article  PubMed  CAS  Google Scholar 

  98. Liu S, Wu P, Ye D, Huang Y, Zhou X, Li Y, Cai L (2009) Effects of lipoxin A(4) on CoCl(2)-induced angiogenesis and its possible mechanisms in human umbilical vein endothelial cells. Pharmacology 84:17–23

    Article  PubMed  CAS  Google Scholar 

  99. Liu Y, Chen K, Wang C, Gong W, Yoshimura T, Liu M, Wang JM (2013) Cell surface receptor FPR2 promotes antitumor host defense by limiting m2 polarization of macrophages. Cancer Res 73:550–560

    Article  PubMed  CAS  Google Scholar 

  100. Coffelt SB, Marini FC, Watson K, Zwezdaryk KJ, Dembinski JL, LaMarca HL, Tomchuck SL, Honer zu Bentrup K, Danka ES, Henkle SL et al (2009) The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci U S A 106:3806–3811

    Article  PubMed  CAS  Google Scholar 

  101. De Santo C, Arscott R, Booth S, Karydis I, Jones M, Asher R, Salio M, Middleton M, Cerundolo V (2010) Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol 11:1039–1046

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China Grants no. 30570726, 30772154, and 30972797.

Conflicts of interest statement

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongsheng Li or Duyun Ye.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 137 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Ye, D. Molecular biology for formyl peptide receptors in human diseases. J Mol Med 91, 781–789 (2013). https://doi.org/10.1007/s00109-013-1005-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1005-5

Keywords

Navigation