Skip to main content
Log in

Induction of primitive pigment cell differentiation by visible light (helium–neon laser): a photoacceptor-specific response not replicable by UVB irradiation

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Solar lights encompass ultraviolet (UV), visible, and infrared spectrum. Most previous studies focused on the harmful UV effects, and the biologic effects of lights at other spectrums remained unclear. Recently, lights at visible region have been used for regenerative purposes. Using the process of vitiligo repigmentation as a research model, we focused on elucidating the pro-differentiation effects induced by visible light. We first showed that helium–neon (He–Ne) laser (632.8 nm) irradiation stimulated differentiation of primitive pigment cells, an effect not replicable by UVB treatment even at high and damaging doses. In addition, significant increases of mitochondrial DNA copy number and the regulatory genes for mitochondrial biogenesis were induced by He–Ne laser irradiation. Mechanistically, we demonstrated that He–Ne laser initiated mitochondrial retrograde signaling via a Ca2+-dependent cascade. The impact on cytochrome c oxidase within the mitochondria is responsible for the efficacy of He–Ne laser in promoting melanoblast differentiation. Taken together, we propose that visible lights from the sun provide important environmental cues for the relatively quiescent stem or primitive cells to differentiate. In addition, our results also indicate that visible light may be used for regenerative medical purposes involving stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gilchrest BA, Park HY, Eller MS, Yaar M (1996) Mechanisms of ultraviolet light-induced pigmentation. Photochem Photobiol 63:1–10

    Article  PubMed  CAS  Google Scholar 

  2. Hirobe T (2005) Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cell Res 18:2–12

    Article  PubMed  CAS  Google Scholar 

  3. Wu CS, Yu CL, Wu CS, Lan CC, Yu HS (2004) Narrow-band ultraviolet-B stimulates proliferation and migration of cultured melanocytes. Exp Dermatol 13:755–763

    Article  PubMed  CAS  Google Scholar 

  4. Hosaka E, Soma Y, Kawa Y, Kaminaga H, Osumi K, Ooka S, Watabe H, Ito M, Murakami F, Mizoguchi M (2004) Effects of ultraviolet light on melanocyte differentiation: studies with mouse neural crest cells and neural crest-derived cell lines. Pigment Cell Res 17:150–157

    Article  PubMed  CAS  Google Scholar 

  5. Lan CC, Wu CS, Chiou MH, Hsieh PC, Yu HS (2006) Low-energy helium–neon laser induces locomotion of the immature melanoblasts and promotes melanogenesis of the more differentiated melanoblasts: recapitulation of vitiligo repigmentation in vitro. J Investig Dermatol 126:2119–2126

    Article  PubMed  CAS  Google Scholar 

  6. Yu HS, Wu CS, Yu CL, Kao YH, Chiou MH (2003) Helium–neon laser irradiation stimulates migration and proliferation in melanocytes and induces repigmentation in segmental-type vitiligo. J Investig Dermatol 120:56–64

    Article  PubMed  CAS  Google Scholar 

  7. Lan CC, Wu CS, Chiou MH, Chiang TY, Yu HS (2009) Low-energy helium–neon laser induces melanocyte proliferation via interaction with type IV collagen: visible light as a therapeutic option for vitiligo. Br J Dermatol 161:273–280

    Article  PubMed  CAS  Google Scholar 

  8. Staricco RG, Miller-Milinska A (1962) Activation of the amelanotic melanocytes in the outer root sheath of the hair follicle following ultra violet rays exposure. J Investig Dermatol 39:163–164

    PubMed  CAS  Google Scholar 

  9. Cui J, Shen LY, Wang GC (1991) Role of hair follicles in the repigmentation of vitiligo. J Investig Dermatol 97:410–416

    Article  PubMed  CAS  Google Scholar 

  10. Pastore D, Greco M, Passarella S (2000) Specific helium–neon laser sensitivity of the purified cytochrome c oxidase. Int J Radiat Biol 76:863–870

    Article  PubMed  CAS  Google Scholar 

  11. Greco M, Guida G, Perlino E, Marra E, Quagliariello E (1989) Increase in RNA and protein synthesis by mitochondria irradiated with helium–neon laser. Biochem Biophys Res Commun 163:1428–1434

    Article  PubMed  CAS  Google Scholar 

  12. Vacca RA, Marra E, Quagliariello E, Greco M (1993) Activation of mitochondrial DNA replication by He–Ne laser irradiation. Biochem Biophys Res Commun 195:704–709

    Article  PubMed  CAS  Google Scholar 

  13. Vacca RA, Marra E, Passarella S, Petragallo VA, Greco M (1996) Increase in cytosolic and mitochondrial protein synthesis in rat hepatocytes irradiated in vitro by He–Ne laser. J Photochem Photobiol B 34:197–202

    Article  PubMed  CAS  Google Scholar 

  14. Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84:1091–1099

    Article  PubMed  CAS  Google Scholar 

  15. Lee HC, Wei YH (2000) Mitochondrial role in life and death of the cell. J Biomed Sci 7:2–15

    Article  PubMed  CAS  Google Scholar 

  16. Chen CT, Shih YR, Kuo TK, Lee OK, Wei YH (2008) Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 26:960–968

    Article  PubMed  CAS  Google Scholar 

  17. Kawa Y, Soma Y, Nakamura M, Ito M, Kawakami T, Baba T, Sibahara K, Ohsumi K, Ooka S, Watabe H et al (2005) Establishment of a kit-negative cell line of melanocyte precursors from mouse neural crest cells. Pigment Cell Res 18:188–195

    Article  PubMed  CAS  Google Scholar 

  18. Ito M, Kawa Y, Watabe H, Ono H, Ooka S, Nakamura M, Soma Y, Mizoguchi M (2004) Establishment by an original single-cell cloning method and characterization of an immortal mouse melanoblast cell line (NCCmelb4). Pigment Cell Res 17:643–650

    Article  PubMed  Google Scholar 

  19. Ooka S, Kawa Y, Ito M, Soma Y, Mizoguchi M (2001) Establishment and characterization of a mouse neural crest derived cell line (NCCmelan5). Pigment Cell Res 14:268–274

    Article  PubMed  CAS  Google Scholar 

  20. Yu HS, Chang KL, Yu CL, Chen JW, Chen GS (1996) Low-energy helium–neon laser irradiation stimulates interleukin-1 alpha and interleukin-8 release from cultured human keratinocytes. J Investig Dermatol 107:593–596

    Article  PubMed  CAS  Google Scholar 

  21. Wu KY, Wang HZ, Hong SJ (2007) Mechanism of unoprostone-induced cytosolic Ca2+ mobility in cultured porcine corneal endothelial cells. Exp Eye Res 85:185–191

    Article  PubMed  CAS  Google Scholar 

  22. Hu WP, Wang JJ, Yu CL, Lan CC, Chen GS, Yu HS (2007) Helium–neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Investig Dermatol 127:2048–2057

    Article  PubMed  CAS  Google Scholar 

  23. Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R, Williams RS (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:349–352

    Article  PubMed  CAS  Google Scholar 

  24. Tachibana M (2000) MITF: a stream flowing for pigment cells. Pigment Cell Res 13:230–240

    Article  PubMed  CAS  Google Scholar 

  25. Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci USA 100:7111–7116

    Article  PubMed  CAS  Google Scholar 

  26. Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 25:1354–1366

    Article  PubMed  CAS  Google Scholar 

  27. Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18:231–236

    Article  PubMed  CAS  Google Scholar 

  28. Butow RA, Avadhani NG (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14:1–15

    Article  PubMed  CAS  Google Scholar 

  29. Passarella S, Ostuni A, Atlante A, Quagliariello E (1988) Increase in the ADP/ATP exchange in rat liver mitochondria irradiated in vitro by helium–neon laser. Biochem Biophys Res Commun 156:978–986

    Article  PubMed  CAS  Google Scholar 

  30. Biswas G, Adebanjo OA, Freedman BD, Anandatheerthavarada HK, Vijayasarathy C, Zaidi M, Kotlikoff M, Avadhani NG (1999) Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk. EMBO J 18:522–533

    Article  PubMed  CAS  Google Scholar 

  31. Arnould T, Vankoningsloo S, Renard P, Houbion A, Ninane N, Demazy C, Remacle J, Raes M (2002) CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation. EMBO J 21:53–63

    Article  PubMed  CAS  Google Scholar 

  32. Masaki H, Izutsu Y, Yahagi S, Okano Y (2009) Reactive oxygen species in HaCaT keratinocytes after UVB irradiation are triggered by intracellular Ca(2+) levels. J Investig Dermatol Symp Proc 14:50–52

    Article  PubMed  CAS  Google Scholar 

  33. Fritsche E, Schafer C, Calles C, Bernsmann T, Bernshausen T, Wurm M, Hubenthal U, Cline JE, Hajimiragha H, Schroeder P et al (2007) Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc Natl Acad Sci USA 104:8851–8856

    Article  PubMed  CAS  Google Scholar 

  34. Kawakami T, Kimura S, Kawa Y, Kato M, Mizoguchi M, Soma Y (2008) BMP-4 upregulates Kit expression in mouse melanoblasts prior to the Kit-dependent cycle of melanogenesis. J Investig Dermatol 128:1220–1226

    Article  PubMed  CAS  Google Scholar 

  35. Jiao Z, Mollaaghababa R, Pavan WJ, Antonellis A, Green ED, Hornyak TJ (2004) Direction interaction of Sox10 with the promoter of murine Dopachrome tautomerase (Dct) and synergistic activation of Dct expression with Mitf. Pigment Cell Res 17:352–362

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yau-Huei Wei or Hsin-Su Yu.

Additional information

CC E. Lan and SB Wu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, CC.E., Wu, SB., Wu, CS. et al. Induction of primitive pigment cell differentiation by visible light (helium–neon laser): a photoacceptor-specific response not replicable by UVB irradiation. J Mol Med 90, 321–330 (2012). https://doi.org/10.1007/s00109-011-0822-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0822-7

Keywords

Navigation