Skip to main content

Advertisement

Log in

Pneumococcal pathogenesis: “innate invasion” yet organ-specific damage

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Streptococcus pneumoniae encounters a variety of unique cellular situations during colonization of the nasopharynx or invasion into the lungs, the bloodstream, or the central nervous system. The ligand/receptor pairings that enable this progression of disease appear to be shared by many respiratory pathogens suggesting that a primitive “innate invasion” mechanism may underlie the well-known species-specific mechanisms of pathogenesis. That the acute phase of the innate immune response includes elements to interrupt this path supports this concept. However, it also appears that each cell type or organ responds differently to activation of this innate invasion pathway leaving some organs, such as the lung, intact post-infection but others, such as the brain, largely destroyed. This review posits a concept of innate invasion but cautions that organ-specific responses complicate opportunities for a simple approach to protect from organ damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Orihuela C, Mahdavi J, Thornton J, Mann B, Wooldridge K, Abouseada N, Oldfield N, Self T, Ala’Aldeen D, Tuomanen E (2009) Laminin receptor initiates contact of bacteria with the blood brain barrier. J Clin Invest 119:1638–1646

    Article  CAS  PubMed  Google Scholar 

  2. Luo R, Mann B, Lewis W, Rowe A, Heath R, Stewart M, Hamburger A, Sivakolundu S, Lacy E, Bjorkman P, Tuomanen E, Kriwacki R (2005) Solution structure of choline binding protein A of Streptococcus pneumoniae reveals a novel mode of interaction with its human receptor, plgR. EMBO 24:34–43

    Article  CAS  Google Scholar 

  3. Hammerschmidt S, Talay S, Brandtzaeg P, Chhatwal G (1997) SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol Microbiol 25:1113–1124

    Article  CAS  PubMed  Google Scholar 

  4. Zhang J-R, Mostov K, Lamm M, Nanno M, Shimida S, Ohwaki M, Tuomanen E (2000) The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102:827–837

    Article  CAS  PubMed  Google Scholar 

  5. Leucht C, Simoneau S, Rey C, Vana K, Rieger R, Ida Lasmezas C, Weiss S (2003) The 37 kDa/67 kDa laminin receptor is required for PrpSc propagation in scrapie-infected neuronal cells. EMBO Rep 4:290–295

    Article  CAS  PubMed  Google Scholar 

  6. Gauczynski S, Peyrin J, Haik S, Leucht C, Hundt C, Rieger R, Krasemann S, Deslys J, Dormont D, Ida Lasmezas C, Weiss S (2001) The 37 kDa/67 kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO 20:5863–5875

    Article  CAS  Google Scholar 

  7. Cundell D, Gerard N, Gerard C, Idanpaan-Heikkila I, Tuomanen E (1995) Streptococcus pneumoniae anchors to activated eukaryotic cells by the receptor for platelet activating factor. Nature 377:435–438

    Article  CAS  PubMed  Google Scholar 

  8. Swords W, Ketterer M, Shao J, Campbell C, Weiser J, Apicella M (2001) Binding of the non-typeable Haemophilus influenzae lipooligosaccharide to the PAF receptor initiates host cell signalling. Cell Microbiol 3:525–536

    Article  CAS  PubMed  Google Scholar 

  9. Virji M, Saunders J, Sims F, Makepeace K, Maskell D, Ferguson D (1993) Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin. Mol Microbiol 10:1013–1028

    Article  CAS  PubMed  Google Scholar 

  10. Weiser J, Pan N, McGowan K, Musher D, Martin A, Richards J (1998) Phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae contributes to persistence in the respiratory tract and sensitivity to serum killing mediated by C-reactive protein. J Exp Med 187:631–640

    Article  CAS  PubMed  Google Scholar 

  11. Cundell D, Weiser J, Shen J, Young A, Tuomanen E (1995) Relationship between colonial morphology and adherence of Streptococcus pneumoniae. Infect Immun 63:757–761

    CAS  PubMed  Google Scholar 

  12. Weiser J, Austrian R, Sreenivasan P, Masure H (1994) Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect Immun 62:2582–2589

    CAS  PubMed  Google Scholar 

  13. Weiser J, Goldberg J, Pan N, Wilson L, Virji M (1998) The phosphorylcholine epitope undergoes phase variation on a 43-kilodalton prpotein in Pseudomonas aeruginosa and on pili of Neisseria. Infect Immun 66:4263–4267

    CAS  PubMed  Google Scholar 

  14. Gmur R, Thurnheer T, Guggenheim B (1999) Dominant cross-reactive antibodies generated during the response to a variety of oral bacterial species detect phosphorylcholine. J Dent Res 78:77–85

    Article  CAS  PubMed  Google Scholar 

  15. Radin J, Orihuela C, Murti G, Guglielmo C, Murray P, Tuomanen E (2005) ß-arrestin 1 determines the traffic pattern of PAFr-mediated endocytosis of Streptococcus pneumoniae. Infect Immun 73:7827–7835

    Article  CAS  PubMed  Google Scholar 

  16. Rijneveld A, Weijer S, Florquin S, Speelman P, Shimizu T, Ishii S, van der Poll T (2004) Improved host defense against pneumococcal pneumonia in platelet-activating factor receptor-deficient mice. J Infect Dis 189:711–716

    Article  PubMed  Google Scholar 

  17. Pang B, Winn D, Johnson R, Hong W, West-Barnette S, Kock N, Swords W (2008) Lipooligosaccharides containing phosphorylcholine delay pulmonary clearance of nontypeable Haemophilus influenzae. Infect Immun 76:2037–2043

    Article  CAS  PubMed  Google Scholar 

  18. Gehre F, Spisek R, Kharat A, Matthews P, Kukreja A, Anthony R, Dhodapkar M, Vollmer W, Tomasz A (2009) Role of teichoic acid choline moieties in the virulence of Streptococcus pneumoniae. Infect Immun 77:2824–2831

    Article  CAS  PubMed  Google Scholar 

  19. Serino L, Virji M (2000) Phosphorylcholine decoration of lipopolysaccharide differentiates commensal Neisseriae from pathogenic strains: identification of licA-type genes in commensal Neisseriae. Mol Microbiol 36:784–795

    Article  PubMed  Google Scholar 

  20. Gillespie S, Ainscough S, Dickens A, Lewin J (1996) Phosphorylcholine–containing antigens in bacteria from the mouth and respiratory tract. J Med Microbiol 44:35–40

    Article  CAS  PubMed  Google Scholar 

  21. Barbier M, Oliver A, Rao J, Hanna S, Goldberg J, Alberti S (2008) Novel phosphorylcholine-containing protein of Pseudomonas aeruginosa chronic infection isolates interacts with airway epithelial cells. J Infect Dis 197:465–473

    Article  CAS  PubMed  Google Scholar 

  22. Harper M, Cox A, St Michael F, Parnas H, Wilkie I, Blackall P, Adler B, Boyce J (2007) Decoration of Pasteurella multocida lipopolysaccharide with phosphocholine is important for virulence. J Bacteriol 189:7384–7391

    Article  CAS  PubMed  Google Scholar 

  23. Galvan E, Chen H, Schifferli D (2007) The Psa fimbriae of Yersinia pestis interact with phosphatidylcholine on alveolar epithelial cells and pulmonary surfactant. Infect Immun 75:1272–1279

    Article  CAS  PubMed  Google Scholar 

  24. Gould J, Weiser J (2002) The inhibitory effect of C-reactive protein on bacterial phosphorylcholine platelet-activating factor receptor-mediated adherence is blocked by surfactant. J Infect Dis 186:361–371

    Article  CAS  PubMed  Google Scholar 

  25. Casey R, Newcombe J, McFadden J, Bodman-Smith K (2008) The acute-phase reactant C-reactive protein binds to phosphorylcholine-expressing Neisseria meningitidis and increases uptake by human phagocytes. Infect Immun 76:1298–1304

    Article  CAS  PubMed  Google Scholar 

  26. Goldenberg H, McCool T, Weiser J (2004) Cross-reactivity of human immunoglobulin G2 recognizing phosphorylcholine and evidence for protection against major bacterial pathogens of the human respiratory tract. J Infect Dis 190:1254–1263

    Article  CAS  PubMed  Google Scholar 

  27. Fillon S, Soulis K, Rajasekaran S, Benedict-Hamilton H, Radin J, Orihuela C, El Kasmi K, Murti G, Kaushal D, Gaber M, Weber J, Murray P, Tuomanen E (2006) Platelet activating factor and innate immunity: uptake of Gram positive bacterial cell wall into host cells and cell-specific pathophysiology. J Immunol 177:6182–6191

    CAS  PubMed  Google Scholar 

  28. Braun J, Novak R, Bodmer S, Cleveland J, Tuomanen E (1999) Neuroprotection by a caspase inhibitor in acute bacterial meningitis. Nature Medicine 5:298–302

    Article  CAS  PubMed  Google Scholar 

  29. Braun J, Novak R, Murray P, Eischen C, Susin S, Kroemer G, Halle A, Weber J, Tuomanen E, Cleveland J (2001) Apoptosis inducing factor mediates microglial and neuronal apoptosis caused by pneumococcus. J Infect Dis 184:1300–1309

    Article  CAS  PubMed  Google Scholar 

  30. Arditi M, Mason E, Bradley J (1998) Three year multicenter surveillance of pneumococcal meningitis in children. Pediatrics 102:1087–1097

    Article  CAS  PubMed  Google Scholar 

  31. Nau R, Soto A, Bruck W (1999) Apoptosis of neurons in the dentate gyrus in humans suffereing from bacterial meningitis. J Neuropathol Exp Neurol 58:265–274

    Article  CAS  PubMed  Google Scholar 

  32. Beisswenger C, Coyne C, Shchepetov M, Weiser J (2007) Role of p38 MAP kinase and Transforming Growth Factor ß signaling in transepithelial migration of invasive bacterial pathogens. J Biol Chem 282:28700–28708

    Article  CAS  PubMed  Google Scholar 

  33. Tuomanen E, Liu H, Hengstler B, Zak O, Tomasz A (1985) The induction of meningeal inflammation by components of the pneumococcal cell wall. J Infec Dis 151:859–868

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grants R01 AI27913 and CA21765 and by the American Lebanese Syrian Associated Charities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine I. Tuomanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thornton, J.A., Durick-Eder, K. & Tuomanen, E.I. Pneumococcal pathogenesis: “innate invasion” yet organ-specific damage. J Mol Med 88, 103–107 (2010). https://doi.org/10.1007/s00109-009-0578-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0578-5

Keywords

Navigation