Skip to main content
Log in

Involvement of the ABC-transporter ABCC1 and the sphingosine 1-phosphate receptor subtype S1P3 in the cytoprotection of human fibroblasts by the glucocorticoid dexamethasone

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Glucocorticoids (GC) represent the most commonly used drugs for the treatment of acute and chronic inflammatory skin diseases. However, the topical long-term therapy of GC is limited by the occurrence of skin atrophy. Most interestingly, although GC inhibit proliferation of human fibroblasts, they exert a pronounced anti-apoptopic action. In the present study, we further elucidated the molecular mechanism of the GC dexamethasone (Dex) to protect human fibroblasts from programmed cell death. Dex not only significantly alters the expression of the cytosolic isoenzyme sphingosine kinase 1 but also initiated an enhanced intracellular formation of the sphingolipid sphingosine 1-phosphate (S1P). Investigations using S1P (−/−)3 -fibroblasts revealed that this S1P-receptor subtype is essential for the Dex-induced cytoprotection. Moreover, we demonstrate that the ATP-binding cassette (ABC)-transporter ABCC1 is upregulated by Dex and may represent a crucial carrier to transport S1P from the cytosol to the S1P3-receptor subtype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABC-transporter:

ATP-binding cassette transporter

Act:

actinomycin D

ASO:

antisense-oligonucleotide

BH3:

Bcl-2 homology 3 domain

BSA:

bovine serum albumin

DMEM:

Dulbecco’s modified Eagle’s medium

EDTA:

ethylenediaminetetraacetic acid

EGF:

epidermal growth factor

FACS:

fluorescence-activated cell sorting

FCS:

foetal calf serum

cFLIP:

FADD-like IL-1β-converting enzyme inhibitory protein

Dex:

dexamethasone

FLICE:

FADD-like IL-1β-converting enzyme

GC:

glucocorticoids

GPCR:

G-protein-coupled receptor

GR:

glucocorticoid receptor

HEPES:

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

IL:

interleukin

MKP-1:

mapkinase phosphatase 1

NF-κB:

nuclear factor k B

ODN:

oligonucleotides

PBS:

phosphate-buffered saline

PCR:

polymerase chain reaction

PDGF:

platelet-derived growth factor

PI3K:

phosphoinositol-3-kinase

PVDF:

polyvinylidene difluoride

SDS:

sodium dodecyl sulphate

siRNA:

small interfering RNA

SphK:

sphingosine kinase

S1P:

sphingosine 1-phosphate

TNFα:

tumour necrosis factor α

VEGF:

vascular endothelial growth factor

References

  1. Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids new mechanisms for old drugs. N Engl J Med 353:1711–1723

    Article  PubMed  CAS  Google Scholar 

  2. Schoepe S, Schacke H, May E et al (2006) Glucocorticoid therapy-induced skin atrophy. Exp Dermatol 15:406–420

    Article  PubMed  CAS  Google Scholar 

  3. Hammer S, Sauer B, Spika I et al (2004) Glucocorticoids mediate differential anti-apoptotic effects in human fibroblasts and keratinocytes via sphingosine-1-phosphate formation. J Cell Biochem 91:840–851

    Article  PubMed  CAS  Google Scholar 

  4. Sharma S, Lichtenstein A (2008) Dexamethasone-induced apoptotic mechanisms in myeloma cells investigated by analysis of mutant glucocorticoid receptors. Blood 112:1338–1345

    Article  PubMed  CAS  Google Scholar 

  5. Herr I, Gassler N, Friess H et al (2007) Regulation of differential pro- and anti-apoptotic signaling by glucocorticoids. Apoptosis 12:271–291

    Article  PubMed  CAS  Google Scholar 

  6. Oh HY, Namkoong S, Lee SJ et al (2006) Dexamethasone protects primary cultured hepatocytes from death receptor-mediated apoptosis by upregulation of cFLIP. Cell Death Differ 13:512–523

    Article  PubMed  CAS  Google Scholar 

  7. Spiegel S, Milstien S (2002) Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem 277:25851–25854

    Article  PubMed  CAS  Google Scholar 

  8. Takabe K, Paugh SW, Milstien S et al (2008) "Inside-out" signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev 60:181–195

    Article  PubMed  CAS  Google Scholar 

  9. Watterson KR, Lanning DA, Diegelmann RF et al (2007) Regulation of fibroblast functions by lysophospholipid mediators: potential roles in wound healing. Wound Repair Regen 15:607–616

    Article  PubMed  Google Scholar 

  10. Hofmann LP, Ren S, Schwalm S et al (2008) Sphingosine kinase 1 and 2 regulate the capacity of mesangial cells to resist apoptotic stimuli in an opposing manner. Biol Chem 389:1399–1407

    Article  PubMed  CAS  Google Scholar 

  11. Sukocheva OA, Wang L, Albanese N et al (2003) Sphingosine kinase transmits estrogen signaling in human breast cancer cells. Mol Endocrinol 17:2002–2012

    Article  PubMed  CAS  Google Scholar 

  12. Goetzl EJ, Wang W, McGiffert C et al (2007) Sphingosine 1-phosphate as an intracellular messenger and extracellular mediator in immunity. Acta Paediatr Suppl 96:49–52

    Article  PubMed  Google Scholar 

  13. Keller CD, Rivera Gil P, Tolle M et al (2007) Immunomodulator FTY720 induces myofibroblast differentiation via the lysophospholipid receptor S1P3 and Smad3 signaling. Am J Pathol 170:281–292

    Article  PubMed  CAS  Google Scholar 

  14. Mitra P, Oskeritzian CA, Payne SG et al (2006) Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc Natl Acad Sci USA 103:16394–16399

    Article  PubMed  CAS  Google Scholar 

  15. Sato K, Malchinkhuu E, Horiuchi Y et al (2007) Critical role of ABCA1 transporter in sphingosine 1-phosphate release from astrocytes. J Neurochem 103:2610–2619

    CAS  Google Scholar 

  16. Ishii I, Friedman B, Ye X et al (2001) Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3. J Biol Chem 276:33697–33704

    Article  PubMed  CAS  Google Scholar 

  17. Manggau M, Kim DS, Ruwisch L et al (2001) 1Alpha, 25-Dihydroxyvitamnin D3 protects human keratinocytes from apoptosis by the formation of sphingosine 1-phosphate. J Invest Dermatol 117:1241–1249

    Article  PubMed  CAS  Google Scholar 

  18. Ruwisch L, Schafer-Korting M, Kleuser B (2001) An improved high-performance liquid chromatographic method for the determination of sphingosine-1-phosphate in complex biological materials. Naunyn Schmiedeberg’s Arch Pharmacol 363:358–363

    Article  CAS  Google Scholar 

  19. Ayaori M, Sawada S, Yonemura A et al (2006) Glucocorticoid receptor regulates ATP-binding cassette transporter-A1 expression and apolipoprotein-mediated cholesterol efflux from macrophages. Arterioscler Thromb Vasc Biol 26:163–168

    Article  PubMed  CAS  Google Scholar 

  20. Amsterdam A, Tajima K, Sasson R (2002) Cell-specific regulation of apoptosis by glucocorticoids: implication to their anti-inflammatory action. Biochem Pharmacol 64:843–850

    Article  PubMed  CAS  Google Scholar 

  21. Schmidt M, Pauels HG, Lugering N et al (1999) Glucocorticoids induce apoptosis in human monocytes: potential role of IL-1 beta. J Immunol 163:3484–3490

    PubMed  CAS  Google Scholar 

  22. Davis MC, McColl KS, Zhong F et al (2008) Dexamethasone-induced inositol 1, 4, 5-trisphosphate receptor elevation in murine lymphoma cells is not required for dexamethasone-mediated calcium elevation and apoptosis. J Biol Chem 283:10357–10365

    Article  PubMed  CAS  Google Scholar 

  23. Tissing WJ, Meijerink JP, den Boer ML et al (2003) Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia 17:17–25

    Article  PubMed  CAS  Google Scholar 

  24. Chittenden T (2002) BH3 domains: intracellular death-ligands critical for initiating apoptosis. Cancer Cell 2:165–166

    Article  PubMed  CAS  Google Scholar 

  25. Liu H, Toman RE, Goparaju SK et al (2003) Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem 278:40330–40336

    Article  PubMed  CAS  Google Scholar 

  26. Letai A, Bassik MC, Walensky LD et al (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183–192

    Article  PubMed  CAS  Google Scholar 

  27. Saffar AS, Dragon S, Ezzati P et al (2008) Phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase regulate induction of Mcl-1 and survival in glucocorticoid-treated human neutrophils. J Allergy Clin Immunol 121:492–498

    Article  PubMed  CAS  Google Scholar 

  28. Evans-Storms RB, Cidlowski JA (2000) Delineation of an antiapoptotic action of glucocorticoids in hepatoma cells: the role of nuclear factor-kappaB. Endocrinol 141:1854–1862

    Article  CAS  Google Scholar 

  29. Sauer B, Gonska H, Manggau M et al (2005) Sphingosine 1-phosphate is involved in cytoprotective actions of calcitriol in human fibroblasts and enhances the intracellular Bcl-2/Bax rheostat. Pharmazie 60:298–304

    PubMed  CAS  Google Scholar 

  30. Shida D, Takabe K, Kapitonov D et al (2008) Targeting SphK1 as a new strategy against cancer. Curr Drug Targets 9:662–673

    Article  PubMed  CAS  Google Scholar 

  31. Taha TA, Argraves KM, Obeid LM (2004) Sphingosine-1-phosphate receptors: receptor specificity versus functional redundancy. Biochim Biophys Acta 1682:48–55

    PubMed  CAS  Google Scholar 

  32. Sankala HM, Hait NC, Paugh SW et al (2007) Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. Cancer Res 67:10466–10474

    Article  PubMed  CAS  Google Scholar 

  33. Hait NC, Oskeritzian CA, Paugh SW et al (2006) Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim Biophys Acta 1758:2016–2026

    Article  PubMed  CAS  Google Scholar 

  34. Kobayashi N, Nishi T, Hirata T et al (2006) Sphingosine 1-phosphate is released from the cytosol of rat platelets in a carrier-mediated manner. J Lipid Res 47:614–621

    Article  PubMed  CAS  Google Scholar 

  35. Martin P, Riley R, Back DJ et al (2008) Comparison of the induction profile for drug disposition proteins by typical nuclear receptor activators in human hepatic and intestinal cells. Br J Pharmacol 153:805–819

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grants of the Deutsche Forschungsgemeinschaft to B.K (Kl 988 3-3 and Kl 988 4-2). The experiments comply with the current German law.

Conflict of interest statement

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Kleuser.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 497 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieuwenhuis, B., Lüth, A., Chun, J. et al. Involvement of the ABC-transporter ABCC1 and the sphingosine 1-phosphate receptor subtype S1P3 in the cytoprotection of human fibroblasts by the glucocorticoid dexamethasone. J Mol Med 87, 645–657 (2009). https://doi.org/10.1007/s00109-009-0468-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0468-x

Keywords

Navigation