Skip to main content

Advertisement

Log in

Adult stem cells and their trans-differentiation potential—perspectives and therapeutic applications

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Stem cells are self-renewing multipotent progenitors with the broadest developmental potential in a given tissue at a given time. Normal stem cells in the adult organism are responsible for renewal and repair of aged or damaged tissue. Adult stem cells are present in virtually all tissues and during most stages of development. In this review, we introduce the reader to the basic information about the field. We describe selected stem cell isolation techniques and stem cell markers for various stem cell populations. These include makers for endothelial progenitor cells (CD146/MCAM/MUC18/S-endo-1, CD34, CD133/prominin, Tie-2, Flk1/KD/VEGFR2), hematopoietic stem cells (CD34, CD117/c-Kit, Sca1), mesenchymal stem cells (CD146/MCAM/MUC18/S-endo-1, STRO-1, Thy-1), neural stem cells (CD133/prominin, nestin, NCAM), mammary stem cells (CD24, CD29, Sca1), and intestinal stem cells (NCAM, CD34, Thy-1, CD117/c-Kit, Flt-3). Separate section provides a concise summary of recent clinical trials involving stem cells directed towards improvement of a damaged myocardium. In the last part of the review, we reflect on the field and on future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AGM:

aorta–gonad–mesonephros

BCRP1:

breast cancer resistance protein1

BM:

bone marrow

CABG:

coronary artery bypass graft

CNS:

central nervous system

CSC:

cardiac stem cell

ESC:

embryonic stem cells

Flk1:

fetal liver kinase-1

G-CSF:

granulocyte-colony stimulating factor

GM-CSF:

granulocyte-macrophage-colony stimulating factor

HLA:

human leukocyte antigen

HSC:

hematopoietic stem cell

LVAD:

left ventricular assist device

LVEF:

left ventricular ejection fraction

MAPC:

multipotent adult progenitor cells

MRF:

myogenic regulatory factor

MSC:

mesenchymal stromal cell

NCAM:

neural cell adhesion molecule

NSC:

neuronal stem cells

NYHA:

New York Heart Association

PB:

peripheral blood

Sca1:

stem cell antigen 1

SP:

side population

UC:

umbilical cord

VEGFR2:

vascular endothelial growth factor receptor 2

References

  1. Filip S, English D, Mokry J (2004) Issues in stem cell plasticity. J Cell Mol Med 8:572–577

    PubMed  CAS  Google Scholar 

  2. Hombach-Klonisch S, Paranjothy T, Wiechec E, Pocar P, Mustafa T, Seifert A, Zahl C, Gerlach KL, Biermann K, Steger K, Hoang-Vu C, Schulze-Osthoff K, Los M (2008) Cancer stem cells as targets for cancer therapy: selected cancers as examples. Arch Immunol Ther Exp 56:165–180

    Google Scholar 

  3. Kindler V (2005) Postnatal stem cell survival: does the niche, a rare harbor where to resist the ebb tide of differentiation, also provide lineage-specific instructions? J Leukoc Biol 78:836–844

    PubMed  CAS  Google Scholar 

  4. Scharenberg CW, Harkey MA, Torok-Storb B (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99:507–512

    PubMed  CAS  Google Scholar 

  5. van Herwaarden AE, Schinkel AH (2006) The function of breast cancer resistance protein in epithelial barriers, stem cells and milk secretion of drugs and xenotoxins. Trends Pharmacol Sci 27:10–16

    PubMed  Google Scholar 

  6. Potten CS, Booth C, Pritchard DM (1997) The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol 78:219–243

    PubMed  CAS  Google Scholar 

  7. Mimeault M, Hauke R, Batra SK (2007) Stem cells: a revolution in therapeutics—recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 82:252–264

    PubMed  CAS  Google Scholar 

  8. Juopperi TA, Schuler W, Yuan X, Collector MI, Dang CV, Sharkis SJ (2007) Isolation of bone marrow-derived stem cells using density-gradient separation. Exp Hematol 35:335–341

    PubMed  CAS  Google Scholar 

  9. Jayasinghe SM, Wunderlich J, McKee A, Newkirk H, Pope S, Zhang J, Staehling-Hampton K, Li L, Haug JS (2006) Sterile and disposable fluidic subsystem suitable for clinical high speed fluorescence-activated cell sorting. Cytometry B Clin Cytom 70:344–354

    PubMed  Google Scholar 

  10. Kamentsky LA (1979) Future directions for flow cytometry. J Histochem Cytochem 27:1649–1654

    PubMed  CAS  Google Scholar 

  11. Neurauter AA, Bonyhadi M, Lien E, Nokleby L, Ruud E, Camacho S, Aarvak T (2007) Cell isolation and expansion using dynabeads ((R)). Adv Biochem Eng Biotechnol 106:41–73

    PubMed  CAS  Google Scholar 

  12. Chen HW, Liao CH, Ying C, Chang CJ, Lin CM (2006) Ex vivo expansion of dendritic-cell-activated antigen-specific CD4+ T cells with anti-CD3/CD28, interleukin-7, and interleukin-15: potential for adoptive T cell immunotherapy. Clin Immunol 119:21–31

    PubMed  CAS  Google Scholar 

  13. Das CM, Becker F, Vernon S, Noshari J, Joyce C, Gascoyne PR (2005) Dielectrophoretic segregation of different human cell types on microscope slides. Anal Chem 77:2708–2719

    PubMed  CAS  Google Scholar 

  14. Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T (2005) Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab Chip 5:20–22

    PubMed  CAS  Google Scholar 

  15. Pearce DJ, Ridler CM, Simpson C, Bonnet D (2004) Multiparameter analysis of murine bone marrow side population cells. Blood 103:2541–2546

    PubMed  CAS  Google Scholar 

  16. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    PubMed  CAS  Google Scholar 

  17. Wang N, Morra M, Wu C, Gullo C, Howie D, Coyle T, Engel P, Terhorst C (2001) CD150 is a member of a family of genes that encode glycoproteins on the surface of hematopoietic cells. Immunogenetics 53:382–394

    PubMed  CAS  Google Scholar 

  18. Landau T, Sachs L (1971) Characterization of the inducer required for the development of macrophage and granulocyte colonies. Proc Natl Acad Sci USA 68:2540–2544

    PubMed  CAS  Google Scholar 

  19. Ailles LE, Gerhard B, Hogge DE (1997) Detection and characterization of primitive malignant and normal progenitors in patients with acute myelogenous leukemia using long-term coculture with supportive feeder layers and cytokines. Blood 90:2555–2564

    PubMed  CAS  Google Scholar 

  20. Knospe WH, Hinrichs B, Fried W, Robinson W, Trobaugh FE Jr (1976) Normal colony stimulating factor (CSF) production by bone marrow stromal cells and abnormal granulopoiesis with decreased CFUc in S1/S1d mice. Exp Hematol 4:125–130

    PubMed  CAS  Google Scholar 

  21. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97:14720–14725

    PubMed  CAS  Google Scholar 

  22. Rashedi I, Panigrahi S, Ezzati P, Ghavami S, Los M (2007) Autoimmunity and apoptosis—therapeutic implications. Curr Med Chem 14:3139–3159

    PubMed  CAS  Google Scholar 

  23. Bryder D, Rossi DJ, Weissman IL (2006) Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 169:338–346

    PubMed  CAS  Google Scholar 

  24. Menichella G, Lai M, Serafini R, Pierelli L, Vittori M, Ciarli M, Rumi C, Puggioni P, Scambia G, Sica S, Leone G (1999) Large volume leukapheresis for collecting hemopoietic progenitors: role of CD 34+ precount in predicting successful collection. Int J Artif Organs 22:334–341

    PubMed  CAS  Google Scholar 

  25. Murray L, Chen B, Galy A, Chen S, Tushinski R, Uchida N, Negrin R, Tricot G, Jagannath S, Vesole D et al (1995) Enrichment of human hematopoietic stem cell activity in the CD34+ Thy-1+Lin- subpopulation from mobilized peripheral blood. Blood 85:368–378

    PubMed  CAS  Google Scholar 

  26. Pierelli L, Scambia G, Bonanno G, Rutella S, Puggioni P, Battaglia A, Mozzetti S, Marone M, Menichella G, Rumi C, Mancuso S, Leone G (2000) CD34+/CD105+ cells are enriched in primitive circulating progenitors residing in the G0 phase of the cell cycle and contain all bone marrow and cord blood CD34+/CD38low/- precursors. Br J Haematol 108:610–620

    PubMed  CAS  Google Scholar 

  27. Group SCTC (2005) Allogeneic peripheral blood stem-cell compared with bone marrow transplantation in the management of hematologic malignancies: an individual patient data meta-analysis of nine randomized trials. J Clin Oncol 23:5074–5087

    Google Scholar 

  28. Flomenberg N, Devine SM, Dipersio JF, Liesveld JL, McCarty JM, Rowley SD, Vesole DH, Badel K, Calandra G (2005) The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood 106:1867–1874

    PubMed  CAS  Google Scholar 

  29. Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, Esperou H, Thierry D, Socie G, Lehn P et al (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321:1174–1178

    PubMed  CAS  Google Scholar 

  30. Kim DK, Fujiki Y, Fukushima T, Ema H, Shibuya A, Nakauchi H (1999) Comparison of hematopoietic activities of human bone marrow and umbilical cord blood CD34 positive and negative cells. Stem Cells 17:286–294

    PubMed  CAS  Google Scholar 

  31. Surbek DV, Steinmann C, Burk M, Hahn S, Tichelli A, Holzgreve W (2000) Developmental changes in adhesion molecule expressions in umbilical cord blood CD34 hematopoietic progenitor and stem cells. Am J Obstet Gynecol 183:1152–1157

    PubMed  CAS  Google Scholar 

  32. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  PubMed  CAS  Google Scholar 

  33. Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15:666–673

    PubMed  CAS  Google Scholar 

  34. Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–1234

    PubMed  CAS  Google Scholar 

  35. Grounds MD, White JD, Rosenthal N, Bogoyevitch MA (2002) The role of stem cells in skeletal and cardiac muscle repair. J Histochem Cytochem 50:589–610

    PubMed  CAS  Google Scholar 

  36. Marelli D, Ma F, Chiu RC (1992) Satellite cell implantation for neomyocardial regeneration. Transplant Proc 24:2995

    PubMed  CAS  Google Scholar 

  37. Meeson AP, Hawke TJ, Graham S, Jiang N, Elterman J, Hutcheson K, Dimaio JM, Gallardo TD, Garry DJ (2004) Cellular and molecular regulation of skeletal muscle side population cells. Stem Cells 22:1305–1320

    PubMed  CAS  Google Scholar 

  38. Seidel M, Rozwadowska N, Tomczak K, Kurpisz M (2006) Myoblast preparation into injured myocardium. Eur Heart J 8(Suppl H):H8–15

    CAS  Google Scholar 

  39. Uezumi A, Ojima K, Fukada S, Ikemoto M, Masuda S, Miyagoe-Suzuki Y, Takeda S (2006) Functional heterogeneity of side population cells in skeletal muscle. Biochem Biophys Res Commun 341:864–873

    PubMed  CAS  Google Scholar 

  40. Fiszer D, Seidel M, Siminiak T, Kurpisz M (2007) Future trends: cell engineering for cardiac repair. EuroIntervention 2:889–894

    Google Scholar 

  41. Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85:1373–1416

    PubMed  CAS  Google Scholar 

  42. Torella D, Ellison GM, Mendez-Ferrer S, Ibanez B, Nadal-Ginard B (2006) Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S8–13

    PubMed  CAS  Google Scholar 

  43. Srivastava D, Ivey KN (2006) Potential of stem-cell-based therapies for heart disease. Nature 441:1097–1099

    PubMed  CAS  Google Scholar 

  44. Moretti A, Lam J, Evans SM, Laugwitz KL (2007) Biology of Isl1 + cardiac progenitor cells in development and disease. Cell Mol Life Sci 64:674–682

    PubMed  CAS  Google Scholar 

  45. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W, Hasenfuss G (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199–1203

    PubMed  CAS  Google Scholar 

  46. Passier R, Oostwaard DW, Snapper J, Kloots J, Hassink RJ, Kuijk E, Roelen B, de la Riviere AB, Mummery C (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23:772–780

    PubMed  CAS  Google Scholar 

  47. Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, Murabito JM, Vasan RS (2002) Long-term trends in the incidence of and survival with heart failure. N Engl J Med 347:1397–1402

    PubMed  Google Scholar 

  48. Menasche P (2006) Randomized, placebo-controlled Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) Trial. AHA Meeting, Chicago, November 11–15

  49. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23:845–856

    PubMed  CAS  Google Scholar 

  50. Tambara K, Tabata Y, Komeda M (2004) Factors related to the efficacy of skeletal muscle cell transplantation and future approaches with control-released cell growth factors and minimally invasive surgery. Int J Cardiol 95(Suppl 1):S13–15

    PubMed  Google Scholar 

  51. Kurpisz M, Czepczynski R, Grygielska B, Majewski M, Fiszer D, Jerzykowska O, Sowinski J, Siminiak T (2007) Bone marrow stem cell imaging after intracoronary administration. Int J Cardiol 121:194–195

    PubMed  CAS  Google Scholar 

  52. Askari A, Unzek S, Goldman CK, Ellis SG, Thomas JD, DiCorleto PE, Topol EJ, Penn MS (2004) Cellular, but not direct, adenoviral delivery of vascular endothelial growth factor results in improved left ventricular function and neovascularization in dilated ischemic cardiomyopathy. J Am Coll Cardiol 43:1908–1914

    PubMed  CAS  Google Scholar 

  53. Reinecke H, Minami E, Virag JI, Murry CE (2004) Gene transfer of connexin43 into skeletal muscle. Hum Gene Ther 15:627–636

    PubMed  CAS  Google Scholar 

  54. Ott HC, Bonaros N, Marksteiner R, Wolf D, Margreiter E, Schachner T, Laufer G, Hering S (2004) Combined transplantation of skeletal myoblasts and bone marrow stem cells for myocardial repair in rats. Eur J Cardiothorac Surg 25:627–634

    PubMed  CAS  Google Scholar 

  55. Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462

    PubMed  CAS  Google Scholar 

  56. Wagers AJ, Weissman IL (2004) Plasticity of adult stem cells. Cell 116:639–648

    PubMed  CAS  Google Scholar 

  57. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    PubMed  CAS  Google Scholar 

  58. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170

    PubMed  CAS  Google Scholar 

  59. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105:71–77

    PubMed  CAS  Google Scholar 

  60. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98:10344–10349

    PubMed  CAS  Google Scholar 

  61. Brazelton TR, Rossi FM, Keshet GI, Blau HM (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779

    PubMed  CAS  Google Scholar 

  62. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395–1402

    PubMed  CAS  Google Scholar 

  63. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234

    PubMed  CAS  Google Scholar 

  64. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    PubMed  CAS  Google Scholar 

  65. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96:10711–10716

    PubMed  CAS  Google Scholar 

  66. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    PubMed  CAS  Google Scholar 

  67. Pang W (2000) Role of muscle-derived cells in hematopoietic reconstitution of irradiated mice. Blood 95:1106–1108

    PubMed  CAS  Google Scholar 

  68. Abedi M, Greer DA, Colvin GA, Demers DA, Dooner MS, Harpel JA, Pimentel J, Menon MK, Quesenberry PJ (2004) Tissue injury in marrow transdifferentiation. Blood Cells Mol Diseases 32:42–46

    CAS  Google Scholar 

  69. Quesenberry PJ, Colvin G, Dooner G, Dooner M, Aliotta JM, Johnson K (2007) The stem cell continuum: cell cycle, injury, and phenotype lability. Ann N Y Acad Sci 1106:20–29

    PubMed  Google Scholar 

  70. Tanaka EM (2003) Cell differentiation and cell fate during urodele tail and limb regeneration. Curr Opin Genet Dev 13:497–501

    PubMed  CAS  Google Scholar 

  71. Odelberg SJ, Kollhoff A, Keating MT (2000) Dedifferentiation of mammalian myotubes induced by msx1. Cell 103:1099–1109

    PubMed  CAS  Google Scholar 

  72. Tsai RY, Kittappa R, McKay RD (2002) Plasticity, niches, and the use of stem cells. Dev Cell 2:707–712

    PubMed  CAS  Google Scholar 

  73. Schnapp E, Tanaka EM (2005) Quantitative evaluation of morpholino-mediated protein knockdown of GFP, MSX1, and PAX7 during tail regeneration in Ambystoma mexicanum. Dev Dyn 232:162–170

    PubMed  CAS  Google Scholar 

  74. Chen S, Zhang Q, Wu X, Schultz PG, Ding S (2004) Dedifferentiation of lineage-committed cells by a small molecule. J Am Chem Soc 126:410–411

    PubMed  CAS  Google Scholar 

  75. Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850

    PubMed  CAS  Google Scholar 

  76. Jang YY, Sharkis SJ (2004) Metamorphosis from bone marrow derived primitive stem cells to functional liver cells. Cell Cycle 3:980–982

    PubMed  CAS  Google Scholar 

  77. Direkze NC, Forbes SJ, Brittan M, Hunt T, Jeffery R, Preston SL, Poulsom R, Hodivala-Dilke K, Alison MR, Wright NA (2003) Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow-transplanted mice. Stem Cells 21:514–520

    PubMed  Google Scholar 

  78. Corti S, Locatelli F, Donadoni C, Guglieri M, Papadimitriou D, Strazzer S, Del Bo R, Comi GP (2004) Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues. Brain 127:2518–2532

    PubMed  Google Scholar 

  79. Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L, Henegariu O, Krause DS (2000) Liver from bone marrow in humans. Hepatology 32:11–16

    PubMed  CAS  Google Scholar 

  80. Morshead CM, Benveniste P, Iscove NN, van der Kooy D (2002) Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat Med 8:268–273

    PubMed  CAS  Google Scholar 

  81. Vassilopoulos G, Russell DW (2003) Cell fusion: an alternative to stem cell plasticity and its therapeutic implications. Curr Opin Genet Dev 13:480–485

    PubMed  CAS  Google Scholar 

  82. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Olson S, Grompe M (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422:897–901

    PubMed  CAS  Google Scholar 

  83. Pomerantz J, Blau HM (2004) Nuclear reprogramming: a key to stem cell function in regenerative medicine. Nat Cell Biol 6:810–816

    PubMed  CAS  Google Scholar 

  84. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973

    PubMed  CAS  Google Scholar 

  85. D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971–2981

    PubMed  CAS  Google Scholar 

  86. Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, Greschat S, Knipper A, Bender J, Degistirici O, Gao J, Caplan AI, Colletti EJ, Almeida-Porada G, Muller HW, Zanjani E, Wernet P (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135

    PubMed  Google Scholar 

  87. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    PubMed  CAS  Google Scholar 

  88. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391

    PubMed  CAS  Google Scholar 

  89. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    PubMed  CAS  Google Scholar 

  90. Shizuru JA, Negrin RS, Weissman IL (2005) Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med 56:509–538

    PubMed  CAS  Google Scholar 

  91. Tabata M, Satake A, Okura N, Yamazaki Y, Toda A, Nishioka K, Tanaka H, Chin M, Itsukuma T, Yamaguchi M, Misawa M, Kai S, Hara H (2002) Long-term outcome after allogeneic bone marrow transplantation for hematological malignancies with non-remission status. Results of a single-center study of 24 patients. Ann Hematol 81:582–587

    PubMed  CAS  Google Scholar 

  92. Iannone R, Casella JF, Fuchs EJ, Chen AR, Jones RJ, Woolfrey A, Amylon M, Sullivan KM, Storb RF, Walters MC (2003) Results of minimally toxic nonmyeloablative transplantation in patients with sickle cell anemia and beta-thalassemia. Biol Blood Marrow Transplant 9:519–528

    PubMed  Google Scholar 

  93. Pai SY, DeMartiis D, Forino C, Cavagnini S, Lanfranchi A, Giliani S, Moratto D, Mazza C, Porta F, Imberti L, Notarangelo LD, Mazzolari E (2006) Stem cell transplantation for the Wiskott–Aldrich syndrome: a single-center experience confirms efficacy of matched unrelated donor transplantation. Bone Marrow Transplant 38:671–679

    PubMed  Google Scholar 

  94. Peters C, Krivit W (2000) Hematopoietic cell transplantation for mucopolysaccharidosis IIB (Hunter syndrome). Bone Marrow Transplant 25:1097–1099

    PubMed  CAS  Google Scholar 

  95. Salerno M, Busiello R, Esposito V, Cosentini E, Adriani M, Selleri C, Rotoli B, Pignata C (2004) Allogeneic bone marrow transplantation restores IGF-I production and linear growth in a gamma-SCID patient with abnormal growth hormone receptor signaling. Bone Marrow Transplant 33:773–775

    PubMed  CAS  Google Scholar 

  96. Staba SL, Escolar ML, Poe M, Kim Y, Martin PL, Szabolcs P, Allison-Thacker J, Wood S, Wenger DA, Rubinstein P, Hopwood JJ, Krivit W, Kurtzberg J (2004) Cord-blood transplants from unrelated donors in patients with Hurler’s syndrome. N Engl J Med 350:1960–1969

    PubMed  CAS  Google Scholar 

  97. Ueno NT, Cheng YC, Rondon G, Tannir NM, Gajewski JL, Couriel DR, Hosing C, de Lima MJ, Anderlini P, Khouri IF, Booser DJ, Hortobagyi GN, Pagliaro LC, Jonasch E, Giralt SA, Champlin RE (2003) Rapid induction of complete donor chimerism by the use of a reduced-intensity conditioning regimen composed of fludarabine and melphalan in allogeneic stem cell transplantation for metastatic solid tumors. Blood 102:3829–3836

    PubMed  CAS  Google Scholar 

  98. Kurokawa T, Fischer K, Bertz H, Hoegerle S, Finke J, Mackensen A (2002) In vitro and in vivo characterization of graft-versus-tumor responses in melanoma patients after allogeneic peripheral blood stem cell transplantation. Int J Cancer 101:52–60

    PubMed  CAS  Google Scholar 

  99. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782

    PubMed  CAS  Google Scholar 

  100. Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ (2005) Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 19:1118–1127

    PubMed  CAS  Google Scholar 

  101. Lubovy M, McCune S, Dong JY, Prchal JF, Townes TM, Prchal JT (1996) Stable transduction of recombinant adeno-associated virus into hematopoietic stem cells from normal and sickle cell patients. Biol Blood Marrow Transplant 2:24–30

    PubMed  CAS  Google Scholar 

  102. Bradford GB, Williams B, Rossi R, Bertoncello I (1997) Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol 25:445–453

    PubMed  CAS  Google Scholar 

  103. Stiff P, Gingrich R, Luger S, Wyres MR, Brown RA, LeMaistre CF, Perry J, Schenkein DP, List A, Mason JR, Bensinger W, Wheeler C, Freter C, Parker WRL, Emmanouilides C (2000) A randomized phase 2 study of PBPC mobilization by stem cell factor and filgrastim in heavily pretreated patients with Hodgkin’s disease or non-Hodgkin’s lymphoma. Bone Marrow Transplant 26:471–481

    PubMed  CAS  Google Scholar 

  104. Booy EP, Johar D, Maddika S, Pirzada H, Sahib MM, Gehrke I, Loewen SD, Louis SD, Kadkhoda K, Mowat M, Los M (2006) Monoclonal and bispecific antibodies as novel therapeutics. Arch Immunol Ther Exp 54:1–17

    Google Scholar 

  105. Krzemieniecki K, Szpyt E, Rashedi I, Gawron K, Los M (2006) Targeting of solid tumors and blood malignancies by antibody-based therapies. Centr Eur J Biol 1:167–182

    CAS  Google Scholar 

  106. Anderson JE, Hansen LL, Mooren FC, Post M, Hug H, Zuse A, Los M (2006) Methods and biomarkers for the diagnosis and prognosis of cancer and other diseases: towards personalized medicine. Drug Resist Updat 9:198–210

    PubMed  CAS  Google Scholar 

  107. Kroczak TJ, Baran J, Pryjma J, Siedlar M, Rashedi I, Hernandez E, Alberti EMS, Los M (2006) The emerging importance of DNA mapping and other comprehensive screening techniques as tools to identify new drug targets and as a mean of (cancer) therapy personalization. Expert Opin Ther Targets 10:289–302

    PubMed  CAS  Google Scholar 

  108. Ghavami S, Asoodeh A, Klonisch T, Halayko AJ, Kadkhoda K, Kroczak TJ, Gibson SB, Booy EP, Naderi-Manesh H, Los M (2008) Brevinin-2R(1) semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. J Cell Mol Med 12:1005–1022

    PubMed  CAS  Google Scholar 

  109. Maddika S, Bay GH, Kroczak TJ, Ande SR, Maddika S, Wiechec E, Gibson SB, Los M (2007) Akt is transferred to the nucleus of cells treated with apoptin, and it participates in apoptin-induced cell death. Cell Prolif 40:835–848

    PubMed  CAS  Google Scholar 

  110. Maddika S, Mendoza FJ, Hauff K, Zamzow CR, Paranjothy T, Los M (2006) Cancer-selective therapy of the future: apoptin and its mechanism of action. Cancer Biol Ther 5:10–19

    Article  PubMed  CAS  Google Scholar 

  111. Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A, Eshraghi M, Manda KD, Wiechec E, Los M (2007) Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat 10:13–29

    PubMed  CAS  Google Scholar 

  112. Johnston JB, Navaratnam S, Pitz MW, Maniate JM, Wiechec E, Baust H, Gingerich J, Skliris GP, Murphy LC, Los M (2006) Targeting the EGFR pathway for cancer therapy. Curr Med Chem 13:3483–3492

    PubMed  CAS  Google Scholar 

  113. Zuse A, Prinz H, Muller K, Schmidt P, Gunther EG, Schweizer F, Prehn JH, Los M (2007) 9-Benzylidene-naphtho[2,3-b]thiophen-4-ones and benzylidene-9(10H)-anthracenones as novel tubulin interacting agents with high apoptosis-inducing activity. Eur J Pharmacol 575:34–45

    PubMed  CAS  Google Scholar 

  114. Alexander HK, Booy EP, Xiao W, Ezzati P, Baust H, Los M (2007) Selected technologies to control genes and their products for experimental and clinical purposes. Arch Immunol Ther Exp 55:139–149

    CAS  Google Scholar 

  115. Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9:702–712

    PubMed  CAS  Google Scholar 

  116. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958

    PubMed  CAS  Google Scholar 

  117. Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond) 109:227–241

    Article  CAS  Google Scholar 

  118. Yamamoto Y, Yasumizu R, Amou Y, Watanabe N, Nishio N, Toki J, Fukuhara S, Ikehara S (1996) Characterization of peripheral blood stem cells in mice. Blood 88:445–454

    PubMed  CAS  Google Scholar 

  119. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    PubMed  CAS  Google Scholar 

  120. Rege TA, Hagood JS (2006) Thy-1, a versatile modulator of signaling affecting cellular adhesion, proliferation, survival, and cytokine/growth factor responses. Biochim Biophys Acta 1763:991–999

    PubMed  CAS  Google Scholar 

  121. Rietze RL, Valcanis H, Brooker GF, Thomas T, Voss AK, Bartlett PF (2001) Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412:736–739

    PubMed  CAS  Google Scholar 

  122. Bonfanti L (2006) PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol 80:129–164

    PubMed  CAS  Google Scholar 

  123. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88

    PubMed  CAS  Google Scholar 

  124. Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA (2002) Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245:42–56

    PubMed  CAS  Google Scholar 

  125. Roskams T (2006) Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene 25:3818–3822

    PubMed  CAS  Google Scholar 

  126. Burke ZD, Thowfeequ S, Peran M, Tosh D (2007) Stem cells in the adult pancreas and liver. Biochem J 404:169–178

    PubMed  CAS  Google Scholar 

  127. Menasche P, Hagege AA, Scorsin M, Pouzet B, Desnos M, Duboc D, Schwartz K, Vilquin JT, Marolleau JP (2001) Myoblast transplantation for heart failure. Lancet 357:279–280

    PubMed  CAS  Google Scholar 

  128. Pagani FD, DerSimonian H, Zawadzka A, Wetzel K, Edge AS, Jacoby DB, Dinsmore JH, Wright S, Aretz TH, Eisen HJ, Aaronson KD (2003) Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J Am Coll Cardiol 41:879–888

    PubMed  Google Scholar 

  129. Siminiak T, Kalawski R, Fiszer D, Jerzykowska O, Rzezniczak J, Rozwadowska N, Kurpisz M (2004) Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J 148:531–537

    PubMed  Google Scholar 

  130. Siminiak T, Fiszer D, Jerzykowska O, Grygielska B, Rozwadowska N, Kalmucki P, Kurpisz M (2005) Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. Eur Heart J 26:1188–1195

    PubMed  Google Scholar 

  131. Chachques JC, Herreros J, Trainini J, Juffe A, Rendal E, Prosper F, Genovese J (2004) Autologous human serum for cell culture avoids the implantation of cardioverter-defibrillators in cellular cardiomyoplasty. Int J Cardiol 95(Suppl 1):S29–33

    PubMed  Google Scholar 

  132. Herreros J, Prosper F, Perez A, Gavira JJ, Garcia-Velloso MJ, Barba J, Sanchez PL, Canizo C, Rabago G, Marti-Climent JM, Hernandez M, Lopez-Holgado N, Gonzalez-Santos JM, Martin-Luengo C, Alegria E (2003) Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. Eur Heart J 24:2012–2020

    PubMed  Google Scholar 

  133. Smits PC, van Geuns RJ, Poldermans D, Bountioukos M, Onderwater EE, Lee CH, Maat AP, Serruys PW (2003) Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol 42:2063–2069

    PubMed  Google Scholar 

  134. Dib N, McCarthy P, Campbell A, Yeager M, Pagani FD, Wright S, MacLellan WR, Fonarow G, Eisen HJ, Michler RE, Binkley P, Buchele D, Korn R, Ghazoul M, Dinsmore J, Opie SR, Diethrich E (2005) Feasibility and safety of autologous myoblast transplantation in patients with ischemic cardiomyopathy. Cell Transplant 14:11–19

    PubMed  Google Scholar 

  135. Ince H, Petzsch M, Rehders TC, Chatterjee T, Nienaber CA (2004) Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J Endovasc Ther 11:695–704

    PubMed  Google Scholar 

  136. Law PK, Fang G, Chua F (2003) First-in man myoblast allografts for heart degeneration. Int J Med Implants Devices 1:100–155

    Google Scholar 

Download references

Acknowledgments

The authors (SHK, ML) would like to thank the Manitoba Health Research Council (MHRC) for their generous support. We apologize to those authors whose research was not cited in this review due to the reference number limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Los.

Additional information

Sabine Hombach-Klonisch, Soumya Panigrahi, and Iran Rashedi contributed equally to this review manuscript.

Klaus Schulze-Osthoff and Marek Los share senior authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hombach-Klonisch, S., Panigrahi, S., Rashedi, I. et al. Adult stem cells and their trans-differentiation potential—perspectives and therapeutic applications. J Mol Med 86, 1301–1314 (2008). https://doi.org/10.1007/s00109-008-0383-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0383-6

Keywords

Navigation