Skip to main content

Advertisement

Log in

MIM: a multifunctional scaffold protein

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The protein “missing in metastasis”, known as MIM, has been characterised as an actin-binding scaffold protein that may be involved in cancer metastasis. In this paper, we summarise the literature surrounding the role of MIM in actin and membrane dynamics and in signalling to transcription via the sonic hedgehog pathway. MIM is postulated to have many potential activities, including a BAR-like domain termed the IMD (IRS-MIM domain), which can interact with membranes to induce membrane deformation and also with actin and the small GTPase Rac. How this multifunctional protein and its close relative ABBA-1 regulate cellular behaviour is still very much an open question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee YG, Macoska JA, Korenchuk S, Pienta KJ (2002) MIM, a potential metastasis suppressor gene in bladder cancer. Neoplasia 4:291–294

    Article  PubMed  CAS  Google Scholar 

  2. Mattila PK, Salminen M, Yamashiro T, Lappalainen P (2003) Mouse MIM, a tissue-specific regulator of cytoskeletal dynamics, interacts with ATP-actin monomers through its C-terminal WH2 domain. J Biol Chem 278:8452–8459

    Article  PubMed  CAS  Google Scholar 

  3. Woodings JA, Sharp SJ, Machesky LM (2003) MIM-B, a putative metastasis suppressor protein, binds to actin and to protein tyrosine phosphatase delta. Biochem J 371:463–471

    Article  PubMed  CAS  Google Scholar 

  4. Yamagishi A, Masuda M, Ohki T, Onishi H, Mochizuki N (2004) A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J Biol Chem 279:14929–14936

    Article  PubMed  CAS  Google Scholar 

  5. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465

    Article  PubMed  CAS  Google Scholar 

  6. Boquet I, Boujemaa R, Carlier MF, Preat T (2000) Ciboulot regulates actin assembly during Drosophila brain metamorphosis. Cell 102:797–808

    Article  PubMed  CAS  Google Scholar 

  7. Hertzog M, Yarmola EG, Didry D, Bubb MR, Carlier MF (2002) Control of actin dynamics by proteins made of beta-thymosin repeats: the actobindin family. J Biol Chem 277:14786–14792

    Article  PubMed  CAS  Google Scholar 

  8. Paunola E, Mattila PK, Lappalainen P (2002) WH2 domain: a small, versatile adapter for actin monomers. FEBS Lett 513:92–97

    Article  PubMed  CAS  Google Scholar 

  9. Lee SH, Kerff F, Chereau D, Ferron F, Klug A et al (2007) Structural basis for the actin-binding function of missing-in-metastasis. Structure 15:145–155

    Article  PubMed  CAS  Google Scholar 

  10. Chereau D, Kerff F, Graceffa P, Grabarek Z, Langsetmo K et al (2005) Actin-bound structures of Wiskott–Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly. Proc Natl Acad Sci U S A 102:16644–16649

    Article  PubMed  CAS  Google Scholar 

  11. Millard TH, Bompard G, Heung MY, Dafforn TR, Scott DJ et al (2005) Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J 24:240–250

    Article  PubMed  CAS  Google Scholar 

  12. Disanza A, Mantoani S, Hertzog M, Gerboth S, Frittoli E et al (2006) Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nat Cell Biol 8:1337–1347

    Article  PubMed  CAS  Google Scholar 

  13. Bompard G, Sharp SJ, Freiss G, Machesky LM (2005) Involvement of Rac in actin cytoskeleton rearrangements induced by MIM-B. J Cell Sci 118:5393–5403

    Article  PubMed  CAS  Google Scholar 

  14. Mattila PK, Pykalainen A, Saarikangas J, Paavilainen VO, Vihinen H, Jokitalo E, Lappalainen P (2007) Missing-in-metastasis (MIM) and IRSp53 deform PI (4,5) P2-rich membranes by an inverse BAR domain like mechanism. J Cell Biol 176(7):953–964

    Article  PubMed  CAS  Google Scholar 

  15. Suetsugu S, Murayama K, Sakamoto A, Hanawa-Suetsugu K, Seto A et al (2006) The RAC binding domain/IRSp53-MIM homology domain of IRSp53 induces RAC-dependent membrane deformation. J Biol Chem 281:35347–35358

    Article  PubMed  CAS  Google Scholar 

  16. Gonzalez-Quevedo R, Shoffer M, Horng L, Oro AE (2005) Receptor tyrosine phosphatase-dependent cytoskeletal remodeling by the hedgehog-responsive gene MIM/BEG4. J Cell Biol 168:453–463

    Article  PubMed  CAS  Google Scholar 

  17. Lin J, Liu J, Wang Y, Zhu J, Zhou K et al (2005) Differential regulation of cortactin and N-WASP-mediated actin polymerization by missing in metastasis (MIM) protein. Oncogene 24:2059–2066

    Article  PubMed  CAS  Google Scholar 

  18. Wang Y, Zhou K, Zeng X, Lin J, Zhan X (2007) Tyrosine phosphorylation of missing in metastasis protein (MIM/MTSS1) is implicated in platelet derived growth factor mediated cell shape changes. J Biol Chem 282:7624–7631

    Google Scholar 

  19. Callahan CA, Ofstad T, Horng L, Wang JK, Zhen HH et al (2004) MIM/BEG4, a sonic hedgehog-responsive gene that potentiates Gli-dependent transcription. Genes Dev 18:2724–2729

    Article  PubMed  CAS  Google Scholar 

  20. Loberg RD, Neeley CK, Adam-Day LL, Fridman Y, St John LN et al (2005) Differential expression analysis of MIM (MTSS1) splice variants and a functional role of MIM in prostate cancer cell biology. Int J Oncol 26:1699–1705

    PubMed  CAS  Google Scholar 

  21. Nixdorf S, Grimm MO, Loberg R, Marreiros A, Russell PJ et al (2004) Expression and regulation of MIM (missing in metastasis), a novel putative metastasis suppressor gene, and MIM-B, in bladder cancer cell lines. Cancer Lett 215:209–220

    Article  PubMed  CAS  Google Scholar 

  22. Utikal J, Gratchev A, Muller-Molinet I, Oerther S, Kzhyshkowska J et al (2006) The expression of metastasis suppressor MIM/MTSS1 is regulated by DNA methylation. Int J Cancer 119:2287–2293

    Article  PubMed  CAS  Google Scholar 

  23. Oro AE, Higgins KM, Hu Z, Bonifas JM, Epstein EHJ et al (1997) Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276:817–821

    Article  PubMed  CAS  Google Scholar 

  24. Xie K, Abbruzzese JL (2003) Developmental biology informs cancer: the emerging role of the hedgehog signaling pathway in upper gastrointestinal cancers. Cancer Cell 4:245–247

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Roberto Dominguez of the University of Pennsylvania School of Medicine for helpful discussions and for providing the materials for Fig. 3. We also thank the Medical Research Council UK and the Association for International Cancer Research for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. Machesky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machesky, L.M., Johnston, S.A. MIM: a multifunctional scaffold protein. J Mol Med 85, 569–576 (2007). https://doi.org/10.1007/s00109-007-0207-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0207-0

Keywords

Navigation