Skip to main content

Advertisement

Log in

Endo/exo-proteolysis in neoplastic progression and metastasis

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Biological control of individual cells, organs, and organisms is achieved through interplay of a host of specific interactions that involve various peptidic molecules as modulators or effectors. In tumor cells, these processes may result in uncontrolled growth as a consequence of autocrine and/or paracrine actions. In recent years, growing evidence has accumulated for the important role of proprotein convertases (PCs) and peptide α-amidation enzymes in these processes. The widespread belief that these enzymes are involved in the major features of tumor progression, namely, invasiveness and metastasis, has taken place because of their capacity to process and activate many protein precursors involved in the neoplastic progression and metastasis. This includes degrading extracellular matrix proteases, growth promoting factors, and adhesion molecules. Usually, when the processing of these precursor proteins is achieved by one or more of the known PC family members within the general motif (K/R)-(X) n -(K/R)↓, where n=0, 2, 4, or 6, and X, any amino acid except Cys, the accomplishment of the maturation of these molecules is attained by various posttranslational modifications, including the carboxy-terminal α-amidation. This review article summarizes recent findings on the role of these enzymatic systems in multiple cellular functions that impact on the invasive/metastatic potential of cancer cells and highlight the potential use of their inhibitors in the treatment of multiple cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Khatib AM, Siegfried G, Chrétien M, Metrakos P, Seidah NG (2002) Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. Am J Pathol 160:1921–1935

    PubMed  Google Scholar 

  2. Thomas G (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 10:753–766

    Article  Google Scholar 

  3. Taylor NA, Van De Ven WJ, Creemers JW (2003) Curbing activation: proprotein convertases in homeostasis and pathology. FASEB J 10:1215–1227

    Article  Google Scholar 

  4. Seidah NG, Chrétien M (1999) Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res 848:45–62

    Article  PubMed  Google Scholar 

  5. DeClerck YA (2000) Interactions between tumour cells and stromal cells and proteolytic modification of the extracellular matrix by metalloproteinases in cancer. Eur J Cancer 36:1258–1268

    Article  PubMed  Google Scholar 

  6. Eipper BA, Stoffers DA, Mains RE (1992) The biosynthesis of neuropeptides: peptide α-amidation. Annu Rev Neurosci 15:57–85

    Article  PubMed  Google Scholar 

  7. Fricker LD (1998) Carboxypeptidase E. Annu Rev Physiol 50:309–321

    Article  Google Scholar 

  8. Kato I, Yonekura H, Tajima M, Yanagi M, Yamamoto H, Okamoto H (1990) Two enzymes concerned in peptide hormone α-amidation are synthesized from a single mRNA. Biochem Biophys Res Commun 172:197–203

    Article  PubMed  Google Scholar 

  9. Ouafik L’H, Mattei MG, Giraud P, Oliver C, Eipper BA, Mains RE (1993) Localization of the gene encoding peptidylglycine alpha-amidating monooxygenase (PAM) to human chromosome 5q14-5q21. Genomics 18:319–321

    Article  PubMed  Google Scholar 

  10. Schalken JA, Roebroek AJ, Oomen PP, Wagenaar SS, Debruyne FM, Bloemers HP, Van de Ven WJ (1987) fur gene expression as a discriminating marker for small cell and nonsmall cell lung carcinomas. J Clin Invest 80(6):1545–1549

    PubMed  Google Scholar 

  11. Creemers JW, Roebroek AJ, Van de Ven WJ (1992) Expression in human lung tumor cells of the proprotein processing enzyme PC1/PC3. Cloning and primary sequence of a 5 kb cDNA. FEBS Lett 300:82–88

    Article  PubMed  Google Scholar 

  12. Mbikay M, Sirois F, Yao J, Seidah NG, Chretien M (1997) Comparative analysis of expression of the proprotein convertases furin, PACE4, PC1 and PC2 in human lung tumours. Br J Cancer 75:1509–1514

    PubMed  Google Scholar 

  13. Lopez de Cicco R, Bassi DE, Page R, Klein-Szanto AJ (2002) Furin expression in squamous cell carcinomas of the oral cavity and other sites evaluated by tissue microarray technology. Acta Odontol Latinoam 15:29–37

    PubMed  Google Scholar 

  14. Bassi DE, Mahloogi H, Lopez De Cicco R, Klein-Szanto A (2003) Increased furin activity enhances the malignant phenotype of human head and neck cancer cells. Am J Pathol 160:439–447

    Google Scholar 

  15. Fu Y, Campbell EJ, Shepherd TG, Nachtigal MW (2003) Epigenetic regulation of proprotein convertase PACE4 gene expression in human ovarian cancer cells. Mol Cancer Res 1:569–576

    PubMed  Google Scholar 

  16. Comperts B, Kramer I, Tatham P (2003) Signal transduction, chapter 8. Academic, San Diego

    Google Scholar 

  17. Dubois CM, Blanchette F, Laprise MH, Leduc R, Grondin F, Seidah NG (2001) Evidence that furin is an authentic transforming growth factor-beta1-converting enzyme. Am J Pathol 158:305–316

    PubMed  Google Scholar 

  18. Constam DB, Robertson EJ (1999) Regulation of bone morphogenetic protein activity by prodomains and proprotein convertases. J Cell Biol 144:139–149

    Article  PubMed  Google Scholar 

  19. Pasche B (2001) Role of transforming growth factor beta in cancer. J Cell Physiol 186:153–168

    Article  PubMed  Google Scholar 

  20. Weeks BH, He W, Olson KL, Wang XJ (2001) Inducible expression of transforming growth factor beta1 in papillomas causes rapid metastasis. Cancer Res 61:7435–43

    PubMed  Google Scholar 

  21. Siegfried G, Khatib AM, Benjannet S, Chretien M, Seidah NG (2003) The proteolytic processing of pro-platelet-derived growth factor-A at RRKR(86) by members of the proprotein convertase family is functionally correlated to platelet-derived growth factor-A-induced functions and tumorigenicity. Cancer Res 63:1458–1463

    PubMed  Google Scholar 

  22. Siegfried G, Basak A, Cromlish JA, Benjannet S, Marcinkiewicz J, Chretien M, Seidah NG, Khatib AM (2003) The secretory proprotein convertases furin, PC5, and PC7 activate VEGF-C to induce tumorigenesis. J Clin Invest 111:1723–1732

    Article  PubMed  Google Scholar 

  23. Khatib AM, Siegfried G, Prat A, Luis J, Chretien M, Metrakos P, Seidah NG (2001) Inhibition of proprotein convertases is associated with loss of growth and tumorigenicity of HT29 human colon carcinoma cells: importance of insulin-like growth factor-1 (IGF-1) receptor processing in IGF-1-mediated functions. J Biol Chem 276:30686–30693

    Article  PubMed  Google Scholar 

  24. Santavicca M, Noel A, Angliker H, Stoll I, Segain JP, Anglard P, Chretien M, Seidah N, Basset P (1996) Characterization of structural determinants and molecular mechanisms involved in pro-stromelysin-3 activation by 4-aminophenylmercuric acetate and furin-type convertases. Biochem J 315:953–958

    PubMed  Google Scholar 

  25. Pei D, Weiss SJ (1995) Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375:244–247

    Article  PubMed  Google Scholar 

  26. Yana I, Weiss SJ (2000) Regulation of membrane type-1 matrix metalloproteinase activation by proprotein convertases. Mol Biol Cell 11:2387–2401

    PubMed  Google Scholar 

  27. Loechel F, Gilpin BJ, Engvall E, Albrechtsen R, Wewer UM (1998) Human ADAM 12 (meltrin α) is an active metalloprotease. J Biol Chem 273:16993–16997

    Article  PubMed  Google Scholar 

  28. Kuno K, Kanada N, Nakashima E, Fujiki F, Ichimura F, Matsushima K (1997) Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene. J Biol Chem 272:556–562

    Article  PubMed  Google Scholar 

  29. Kuno K, Terashima Y, Matsushima K (1999) ADAMTS-1 is an active metalloproteinase associated with the extracellular matrix. J Biol Chem 274:18821–18826

    Article  PubMed  Google Scholar 

  30. Springer TA (1995) Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu Rev Physiol 57:827–872

    Article  PubMed  Google Scholar 

  31. Carlos TM, Harlan JM (1994) Leukocyte-endothelial adhesion molecules. Blood 84:2068–2101

    PubMed  Google Scholar 

  32. Lehmann M, Rigot V, Seidah NG, Marvaldi J, Lissitzky JC (1996) Lack of integrin α-chain endoproteolytic cleavage in furin-deficient human colon adenocarcinoma cells LoVo. Biochem J 317:803–809

    PubMed  Google Scholar 

  33. Lissitzky JC, Luis J, Munzer JS, Benjannet S, Parat F, Chretien M, Marvaldi J, Seidah NG (2000) Endoproteolytic processing of integrin pro-α subunits involves the redundant function of furin and proprotein convertase (PC) 5A, but not paired basic amino acid converting enzyme (PACE) 4, PC5B or PC7. Biochem J 346:133–138

    Article  PubMed  Google Scholar 

  34. Berthet V, Rigot V, Champion S, Secchi J, Fouchier F, Marvaldi J, Luis J (2000) Role of endoproteolytic processing in the adhesive and signaling functions of αvß5 integrin. J Biol Chem 275:33308–33313

    Article  PubMed  Google Scholar 

  35. Bergeron E, Basak A, Decroly E, Seidah NG (2003) Processing of alpha4 integrin by the proprotein convertases: histidine at position P6 regulates cleavage. Biochem J 373:475–484

    Article  PubMed  Google Scholar 

  36. Tatemoto K, Mutt V (1978) Chemical determination of polypeptide hormones. Proc Natl Acad Sci U S A 75:4115–4119

    PubMed  Google Scholar 

  37. Mains RE, Dickerson IM, May V, Stoffers DA, Perkins SN, Ouafik L’H, Husten EJ, Eipper BA (1990) Cellular and molecular aspects of peptide hormone biosynthesis. Front Neuroendocrinol 11:52–89

    Google Scholar 

  38. Satani M, Takahashi K, Sakamoto H, Harada S, Kaida Y, Noguchi M (2003) Expression and characterization of human bifunctional peptidylglycine alpha-amidating monooxygenase. Protein Expr Purif 28:293–302

    Article  PubMed  Google Scholar 

  39. Prigge ST, Mains RE, Eipper BA, Amzel LM (2000) New insights into copper monooxygenases and peptide amidation: structure, mechanism and function. Cell Mol Life Sci 57:1236–1259

    PubMed  Google Scholar 

  40. Ouafik L’H, Stoffers DA, Campbell TA, Johnson RC, Bloomquist BI, Mains RE, Eipper BA (1992) The multifunctional peptidylglycine α-amidating monooxygenase gene: exon/intron organization of catalytic, processing and routing domains. Mol Endocrinol 6:1571–1584

    Article  PubMed  Google Scholar 

  41. Gether U, Aakerlund L, Schwartz TW (1991) Comparison of peptidylglycine α-amidation activity in medullary thyroid carcinoma cells, pheochromocytomas, and serum. Mol Cell Endocrinol 79:53–63

    Article  PubMed  Google Scholar 

  42. Maltese JY, Monge G, Giraud P, Salers P, Ouafik L’H, Pelen F, Oliver C (1990) Characterization of an α-amidating activity in a human pancreatic tumour secreting vasoactive intestinal peptide (VIP). Clin Endocrinol 33:467–480

    Google Scholar 

  43. Steel JH, Martinez A, Springall DR, Treston AM, Cuttitta F, Polak JM (1994) Peptidylglycine α-amidating monooxygenase (PAM) immunoreactivity and messenger RNA in human pituitary and increased expression in pituitary tumours. Cell Tissue Res 276:197–207

    PubMed  Google Scholar 

  44. Scopsi L, Andreola S, Pilotti S, Bufalino R, Baldini MT, Testori A, Rilke F (1994) Mucinous carcinoma of the breast: a clinicopathological, histochemical, and immunocytochemical study with special reference to neuroendocrine differentiation. Am J Surg Pathol 18:702–711

    PubMed  Google Scholar 

  45. Liu AY, Corey E, Bladou F, Lange PH, Vessela RL (1996) Prostatic cell lineage markers: emergence of Bcl2+ cells of human prostate cancer xenograft LuCaP 23 following castration. Int J Cancer 65:85–89

    Article  PubMed  Google Scholar 

  46. Rocchi P, Boudouresque F, Zamora AJ, Muracciole X, Lechevallier E, Martin PM, Ouafik L’H (2001) Expression of adrenomedullin and peptide amidation activity in human prostate cancer and in human prostate cancer cell lines. Cancer Res 61:1196–1206

    PubMed  Google Scholar 

  47. Kitamura K, Sakata J, Kangawa K, Kojima M, Matsuo H, Eto T (1993) Cloning and characterization of cDNA encoding a precursor for human adrenomedullin. Biochem Biophys Res Commun 194:720–725

    Article  PubMed  Google Scholar 

  48. Hinson JP, Kapas S, Smith DM (2000) Adrenomedullin, a multifunctional regulatory peptide. Endocr Rev 21:138–167

    Article  PubMed  Google Scholar 

  49. Jimenez N, Abasolo I, Jongsma J, Calvo A, Garayoa M, van der Kwast TH, van Steenbrugge GJ, Montuenga LM (2003) Androgen-independent expression of adrenomedullin and peptidylglycine alpha-amidating monooxygenase in human prostatic carcinoma. Mol Carcinog 38:14–24

    Article  PubMed  Google Scholar 

  50. McKeehan WL, Adams PS, Rosser MP (1984) Direct mitogenic effects of insulin, epidermal growth factor, glucocorticoid, cholera toxin, unknown pituitary factors and possibly prolactin, but not androgen, on normal rat prostate epithelial cells in serum-free, primary cell culture. Cancer Res 44:1998–2010

    PubMed  Google Scholar 

  51. Jongsma J, Oomen MH, Noordzij MA, Romijn JC, van Der Kwast TH, Schroder FH, van Steenbrugge GJ (2000) Androgen-independent growth is induced by neuropeptides in human prostate cancer cell lines. Prostate 42:34–44

    Article  PubMed  Google Scholar 

  52. Culig Z, Hobisch A, Cronauer MV, Radmayr C, Hittmair A, Zhang J, Thurnher M, Bartsch G, Klocker H (1996) Regulation of prostatic growth and function by peptide growth factors. Prostate 28:392–405

    Article  PubMed  Google Scholar 

  53. Ouafik L’H, Sauze S, Boudouresque F, Chinot O, Delfino C, Fina F, Vuaroqueaux V, Dussert C, Palmari J, Dufour H, Grisoli F, Casellas P, Brünner, Martin PM (2002) Neutralization of adrenomedullin inhibits the growth of human glioblastoma cell lines in vitro and suppresses tumor xenograft growth in vivo. Am J Pathol 160:1279–1292

    PubMed  Google Scholar 

  54. Fernandez-Sauze S, Delfino C, Mabrouk K, Dussert C, Chinot O, Martin PM, Grisoli F, Ouafik L’H, Boudouresque F (2004) Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors. Int J Cancer 108:797–804

    Article  PubMed  Google Scholar 

  55. Zhao Y, Hague S, Manek S, Zhang L, Bicknell R, Rees MC (1998) PCR display identifies tamoxifen induction of the novel angiogenic factor adrenomedullin by a nonestrogenic mechanism in the human endometrium. Oncogene 16:409–415

    Article  PubMed  Google Scholar 

  56. Cuttitta F, Carney D, Mulshine J, Moody T, Fedorko J, Fischler A, Minna J (1985) Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 316:823–826

    Article  PubMed  Google Scholar 

  57. Iwai N, Martinez A, Miller MJ, Vos M, Mulshine JL, Treston AM (1999) Autocrine growth loops dependent on peptidyl alpha-amidating enzyme as targets for novel tumor cell growth inhibitors. Lung Cancer 23:209–222

    Article  PubMed  Google Scholar 

  58. Sunday ME, Hua J, Dai HB, Nusrat A, Torday JS (1990) Bombesin increases fetal lung growth and maturation in utero and in organ culture. Am J Respir Cell Mol Biol 3:199–205

    PubMed  Google Scholar 

  59. Willey JC, Lechner JF, Harris CC (1984) Bombesin and the C-terminal tetradecapeptide of gastrin-releasing peptide are growth factors for normal human bronchial epithelial cells. Exp Cell Res 153:245–248

    Article  PubMed  Google Scholar 

  60. Zhou J, Chen J, Mokotoff M, Zhong R, Shultz LD, Ball ED (2003) Bombesin/gastrin-releasing peptide receptor: a potential target for antibody-mediated therapy of small cell lung cancer. Clin Cancer Res 9:4953–4960

    PubMed  Google Scholar 

  61. Kelley MJ, Linnoila RI, Avis IL, Georgiadis MS, Cuttitta F, Mulshine JL, Johnson BE (1997) Antitumor activity of a monoclonal antibody directed against gastrin-releasing peptide in patients with small cell lung cancer. Chest 112:256–261

    PubMed  Google Scholar 

  62. Chaudhry A, Carrasquillo JA, Avis IL, Shuke N, Reynolds JC, Bartholomew R, Larson SM, Cuttitta F, Johnson BE, Mulshine JL (1999) Phase I and imaging trial of a monoclonal antibody directed against gastrin-releasing peptide in patients with lung cancer. Clin Cancer Res 5:3385–3393

    PubMed  Google Scholar 

  63. Iwai N, Martinez A, Miller MJ, Bos M, Mulshine JL, Treston AM (1999) Autocrine growth loops dependent on peptidyl α-amidating enzyme as targets for novel tumor cell growth inhibitors. Lung Cancer 23:209–222

    Article  PubMed  Google Scholar 

  64. Angliker H, Shaw E, Stone SR (1993) Synthesis of oligopeptide chloromethanes to investigate extended binding regions of proteinases: application to the interaction of fibrinogen with thrombin. Biochem J 292:261–266

    PubMed  Google Scholar 

  65. Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W (1992) Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 360:358–361

    Article  PubMed  Google Scholar 

  66. Anderson ED, Molloy SS, Jean F, Fei H, Shimamura S, Thomas G (2002) The ordered and compartment-specific autoproteolytic removal of the furin intramolecular chaperone is required for enzyme activation. J Biol Chem 277:12879–12890

    Article  PubMed  Google Scholar 

  67. Boudreault A, Gauthier D, Lazure C (1998) Proprotein convertase PC1/3–related peptides are potent slow tight-binding inhibitors of murine PC1/3 and Hfurin. J Biol Chem 273:31574–31580

    Article  PubMed  Google Scholar 

  68. Zhong M, Munzer JS, Basak A, Benjannet S, Mowla SJ, Decroly E, Chretien M, Seidah NG (1999) The prosegments of furin and PC7 as potent inhibitors of proprotein convertases. In vitro and ex vivo assessment of their efficacy and selectivity. J Biol Chem 274:33913–33920

    Article  PubMed  Google Scholar 

  69. Nour N, Basak A, Chretien M, Seidah NG (2003) Structure-function analysis of the prosegment of the proprotein convertase PC5A. J Biol Chem 278:2886–2895

    Article  PubMed  Google Scholar 

  70. Basak A, Lazure C (2003) Synthetic peptides derived from the prosegments of proprotein convertase 1/3 and furin are potent inhibitors of both enzymes. Biochem J 373:231–239

    Article  PubMed  Google Scholar 

  71. Sarac MS, Cameron A, Lindberg I (2002) The furin inhibitor hexa-D-arginine blocks the activation of Pseudomonas aeruginosa exotoxin A in vivo. Infect Immun 70:7136–7139

    Article  PubMed  Google Scholar 

  72. Kibler KV, Miyazato A, Yedavalli VS, Dayton AI, Jacobs BL, Dapolito G, Kim SJ, Jeang KT (2004) Polyarginine inhibits gp160 processing by furin and suppresses productive human immunodeficiency virus type 1 infection. J Biol Chem 279:49055–49063

    Article  PubMed  Google Scholar 

  73. Lu W, Zhang W, Molloy SS, Thomas G, Ryan K, Chiang Y, Anderson S, Laskowski M Jr (1993) Arg15-Lys17-Arg18 turkey ovomucoid third domain inhibits human furin. J Biol Chem 268:14583–14585

    PubMed  Google Scholar 

  74. Brennan SO, Owen MC, Boswell DR, Lewis JH, Carrell RW (1984) Circulating proalbumin associated with a variant proteinase inhibitor. Biochim Biophys Acta 802:24–28

    PubMed  Google Scholar 

  75. Jean F, Stella K, Thomas L, Liu G, Xiang Y, Reason AJ, Thomas G (1998) Alpha1-antitrypsin Portland, a bioengineered serpin highly selective for furin: application as an antipathogenic agent. Proc Natl Acad Sci U S A 95:7293–7298

    Article  PubMed  Google Scholar 

  76. Anderson ED, Thomas L, Hayflick JS, Thomas G (1993) Inhibition of HIV-1 gp160-dependent membrane fusion by a furin-directed alpha 1-antitrypsin variant. J Biol Chem 268:24887–24891

    PubMed  Google Scholar 

  77. Bassi DE, Lopez De Cicco R, Mahloogi H, Zucker S, Thomas G, Klein-Szanto AJ (2001) Furin inhibition results in absent or decreased invasiveness and tumorigenicity of human cancer cells. Proc Natl Acad Sci U S A 98:10326–10331

    Article  PubMed  Google Scholar 

  78. Mercapide J, Lopez De Cicco R, Bassi DE, Castresana JS, Thomas G, Klein-Szanto AJ (2002) Inhibition of furin-mediated processing results in suppression of astrocytoma cell growth and invasiveness. Clin Cancer Res 8:1740–1746

    PubMed  Google Scholar 

  79. Uchida K, Chaudhary LR, Sugimura Y, Adkisson HD, Hruska KA (2003) Proprotein convertases regulate activity of prostate epithelial cell differentiation markers and are modulated in human prostate cancer cells. J Cell Biochem 88:394–399

    Article  PubMed  Google Scholar 

  80. Jean F, Thomas L, Molloy SS, Liu G, Jarvis MA, Nelson JA, Thomas G (2000) A protein-based therapeutic for human cytomegalovirus infection. Proc Natl Acad Sci U S A 97:2864–2869

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel-Majid Khatib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khatib, AM., Bassi, D., Siegfried, G. et al. Endo/exo-proteolysis in neoplastic progression and metastasis. J Mol Med 83, 856–864 (2005). https://doi.org/10.1007/s00109-005-0692-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0692-y

Keywords

Navigation