Skip to main content
Log in

Development of a novel façade sandwich panel with low-density wood fibres core and wood-based panels as faces

Entwicklung einer neuartigen Sandwich-Fassadenplatte aus einem Kern mit niedrig verdichteten Holzfasern und Holzwerkstoffbeplankung

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The paper explores, experimentally and theoretically, the possibility of producing a novel cladding sandwich panel comprised of a low-density wood fiber (WF) core and faces made of wood-based panels.

Tests on small specimens, using physical and optical devices, were performed for the basic mechanical characterization of WF. Shear modulus (G) was the main target; and values for a range of nominal densities (ρ) from 110 to 190 kg/m3 were obtained.

Short term load tests on real scale WF sandwich (WFS) specimens of 3.2 m span were also performed. An initial simple analytical structural linear model, taking into account the shear deformation of the core, was used to evaluate the data obtaining a reasonable agreement.

The results show that WFSs are a viable solution at least for claddings; special care must be taken, however, in the selection of the face panels due to the influence of hygro-thermal changes. The line of work is especially attractive as WF is a natural and sustainable product.

Zusammenfassung

In diesem Artikel wird auf experimenteller und theoretischer Basis die Möglichkeit aufgezeigt, neuartige Fassadenelemente in Sandwichbauweise bestehend aus einem Kern mit niedrig verdichteten Holzfasern (WF) und einer Holzwerkstoffbeplankung herzustellen.

An kleinen Prüfkörpern wurden unter Verwendung von mechanischen und optischen Messverfahren die grundlegenden mechanischen Eigenschaften der WF bestimmt. Größte Bedeutung hatte dabei die Ermittlung des Schubmoduls (G), und für WF mit einer nominellen Dichte (ρ) von 110 kg/m3 bis 190 kg/m3 wurden Werte bestimmt.

Weiterhin wurden an WF-Sandwich Elementen (WFS) in Bauteilgröße mit einer Spannweite von 3.20 m Kurzzeitprüfungen durchgeführt. Ein einfaches lineares statisches Modell, das die Schubverformung des Kerns berücksichtigt, wurde für die Analyse des Tragverhaltens verwendet. Dieses Modell zeigte eine gute Übereinstimmung mit den Versuchsdaten.

Die Versuchsergebnisse belegen, dass WFS eine brauchbare Konstruktion für Fassaden darstellen, wobei jedoch der Einfluss von Temperatur und Feuchte bei der Auswahl der Beplankungen besonders beachtet werden muss. Hervorzuheben ist, dass mit den WF ein natürliches und nachhaltiges Material zur Verfügung steht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7
Fig. 8 Abb. 8
Fig. 9 Abb. 9
Fig. 10 Abb. 10
Fig. 11 Abb. 11

Similar content being viewed by others

Notes

  1. Dold Holzwerke GmbH. Talstraße 9 79256 Buchenbach/Schwarzwald, Germany. www.dold-holz.de/.

  2. GUTEX® GUTEX Holzfaserplattenwerk H. Henselmann GmbH + Co KG, Gutenburg 5, 79761 Waldshut-Tiengen, Germany, www.gutex.de/.

  3. ARAMIS® system, GOM mbH, Mittelweg 7-8, 38106 Braunschweig, Germany, www.gom.com.

References

  • Allen GH (1969) Analysis and design of structural sandwich panels. Oxford, Pergamon

    Google Scholar 

  • Badel E, Delisee C, Lux J. (2008) 3D structural characterisation, deformation measurements and assessment of low-density wood fibreboard under compression: the use of X-ray microtomography. Compos Sci Technol 68(7–8):1654–1663

    Article  CAS  Google Scholar 

  • Comité Européen de Normalisation (CEN) (2003) Eurocode 5—design of timber structures, Part 1-1: general rules and rules for buildings. prENV 1995-1-1. Bruxelles, Belgium

  • Comité Européen de Normalisation (CEN/TC 88) (2008) EN 13171:2008. Thermal insulating products for buildings—factory made wood fiber (WF) products—specification

  • Comité Européen de Normalisation (CEN) (1995) Eurocode 5—design of timber structures, Part 1-1: general rules and rules for buildings. ENV 1995-1-1. Bruxelles, Belgium

  • Davis JM (ed) (2001) Lightweight sandwich construction. Blackwell Sci, Oxford

    Google Scholar 

  • Dweib MA, Hu B, O’Donnell A, Shenton HW, Wool RP (2004) All natural composite sandwich beams for structural applications. Compos Struct 63(2):147–157

    Article  Google Scholar 

  • EOTA Organisation for Technical Approvals (2005) ETAG-016. Self-supporting composite lightweight panels, Part 3: specific aspects relating to self-supporting composite lightweight panels for use in external walls and claddings

  • Faessel M, Delisee C, Bos F, Castéra P (2005) 3D Modelling of random cellulosic fibrous networks based on X-ray tomography and image analysis. Compos Sci Technol 65(13):1931–1940

    Article  CAS  Google Scholar 

  • Fernández-Cabo JL, Fernández-Lavandera J, Ávila-Jalvo JM (2008) Wood-concrete and wood-wood mixed beams: rational basis for selecting connections. J Struct Eng ASCE 134(3):440–447

    Article  Google Scholar 

  • Ha KH (1990) Finite-element analysis of sandwich plates: an overview. Comput Struct 37(4):397–403

    Article  Google Scholar 

  • Ha KH (1992) Exact analysis of bending and overall buckling of sandwich beam systems. Comput Struct 45(1):31–40

    Article  Google Scholar 

  • Ha KH (1993) Stiffness matrix for exact solutions of sandwich beam and frame systems. J Struct Eng ASCE 119 119(4):1150–1167

    Article  Google Scholar 

  • Kahlert C (2008) Ein rationaler Ansatz für die Definition des Passivhauses bei gewerblicher Nutzung. In: Barta J, Hazucha J (eds) Proceedings of Pasivní Domy, 2008, pp 351–356, 30–31 Oct 2008 Brno, CZ, Centrum Pasivního Domu

  • Kawasaki T (2006) Wood-based sandwich panel with low-density fiberboard for use as structural insulated wall and floor. PhD for Graduate School of Agriculture. Research Institute for Sustainable Human Sphere, Kyoto University

  • Kawasaki T, Kawai S (2006) Thermal insulation properties of wood-based sandwich panel for use as structural insulated walls and floors. J Wood Sci 52(1):75–83

    Article  Google Scholar 

  • Kawasaki T, Zhang M, Kawai S (1998) Manufacture and properties of ultra-low-density fibreboard. J Wood Sci 44:354–360

    Article  Google Scholar 

  • Kawasaki T, Hwang K, Komatsu K et al. (2003) In-plane shear properties of the wood-based sandwich panel as a small shear wall evaluated by the shear test method using tie-rods. J Wood Sci 49(3):199–209

    Article  Google Scholar 

  • Kawasaki T, Zhang M, Wang Q, Komatsu K, Kawai S (2006) Elastic moduli and stiffness optimization in four-point bending of wood-based sandwich panel for use as structural insulated walls and floors. J Wood Sci 52(4):302–310

    Article  Google Scholar 

  • Kreuzinger H (1995) Lecture B11. Mechanically joined beams and colums. Step 1. Timber Engineering. Centrum Hout, The Netherlands, B11/1-8

  • NORDTEST (1991) Timber in structural sizes: determination of shear strength and shear modulus parallel to the grain. NT Build 378

  • O’Donnell A, Dweib MA, Wool RP (2004) Natural fiber composites with plant oil-based resin. Compos Sci Technol 64(9):1135–1145

    Article  Google Scholar 

  • Poquillon D, Viguier B, Andrieu E (2005) Experimental data about mechanical behavior during compression tests for various matted fibres. J Mater Sci 40(22):5963–5970

    Article  CAS  Google Scholar 

  • Pourdeyhimi B, Maze B, Tafreshi HV (2006) Simulation and analysis of unbonded nonwoven fibrous structures. J Eng Fibers Fabrics 1(2):47–65

    Google Scholar 

  • Stock SR (2008) Recent advances in X-ray microtomography applied to materials. Int Mater Rev 53(3):129–181

    Article  CAS  Google Scholar 

  • Tjeerdsma B, Boonstra M, Pizzi A, Tekely P, Militz H (1998a) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh- Werkst 56:149–153

    Article  CAS  Google Scholar 

  • Tjeerdsma B, Boonstra M, Militz H (1998b) Thermal modification of non-durable wood species. Part 2: improved wood properties of thermally treated wood. In: International research group wood preservation. Document No IRG/WP 98-40124

  • Wada A, Kawasaki T, Minoda Y, Kataoka A, Tashiro S, Fukuda H (2003) A method to measure shearing modulus of the foamed core for sandwich plates. Compos Struct 60:385–390

    Article  Google Scholar 

  • Yildiz S (2002) Effects of heat treatment on water repellence and anti-swelling efficiency of beech wood. In: International research group wood preservation: section 4—processes, No IRG/WP 02-40223

Download references

Acknowledgements

The results presented were developed within the IP-SME project HOLIWOOD (Holistic implementation of European thermal treated hard wood in the sector of construction industry and noise protection by sustainable, knowledge-based and value added products). This project is being carried out with financial support from the European Community within the Sixth Framework Program (NMP2-CT-2005-IP 011799-2). We would like to thank the support of the German companies Holzfaserplattenwerk H. Henselmann and Dold Holzwerke for supplying and mounting the WFS. We would also like to thank for the support from GOM (Optical Measurement Techniques), and its filial Spanish company, METRONIC, and particularly to Stefan Hoheisel, for facilitating the use of the ARAMIS system. This publication reflects the authors view. The European Community and the mentioned companies are not liable for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Fernandez-Cabo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez-Cabo, J.L., Majano-Majano, A., San-Salvador Ageo, L. et al. Development of a novel façade sandwich panel with low-density wood fibres core and wood-based panels as faces. Eur. J. Wood Prod. 69, 459–470 (2011). https://doi.org/10.1007/s00107-010-0468-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-010-0468-0

Keywords

Navigation