Skip to main content
Log in

Colour stabilisation of wood composites using polyethylene glycol and melamine resin

Farbstabilisierung von Holzkompositen durch Polyethylenglykol und Melaminharz

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Photo-yellowing of native and polyethylene glycol (PEG) modified wood and wood/melamine resin composites was studied by means of FTIR-ATR technique and colourimetry (CIE L*a*b* method). The discolouration \( \mathrm{\Delta } \)E shows a systematic asymptotic trend towards higher values with increasing irradiation time. Yellowing proceeds faster in natural wood compared to wood/melamine resin composites. Nevertheless, long-term irradiation experiments show that the total colour shift is similar for both.

Discolouration is significantly reduced by PEG treatment. In comparison to untreated wood, both glycol and melamine resin mainly reduce the irradiation-induced yellow shift. Moreover, PEG also shows an effect on the redness shift. Both effects result in decreased yellowing of the composite surface. An influence of the molecular weight of PEG was detected.

Zusammenfassung

Die Photovergilbung von unbehandeltem und Polyethylenglykol (PEG) behandeltem Holz bzw. Holz/Melaminharz-Kompositen wurde mit Hilfe der FTIR-ATR-Technik und Colorimetrie (CIE L*a*b* Methode) untersucht. Die Verfärbung \( \mathrm{\Delta } \)E zeigt dabei einen systematischen, asymptotischen Trend zu größeren Werten mit steigender Bestrahlungszeit. Die Vergilbung verläuft dabei im natürlichen Holz schneller als in den Holz/Melaminharz-Kompositen. Die maximale Farbveränderung ist in beiden Systemen jedoch letztendlich gleich.

Die Verfärbung wird durch PEG-Modifizierung signifikant reduziert. Im Vergleich zum unbehandelten Holz wird durch die Glykol-Modifizierung wie in den Holz/Melaminharz-Kompositen hauptsächlich die Gelbverschiebung reduziert. Zusätzlich zeigt PEG noch einen Effekt auf die Rotverschiebung. Beide Effekte münden in einer verringerten Vergilbung der Kompositoberfläche. Weiterhin wurde ein Einfluss der Molmasse des PEG auf diesen Effekt festgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7
Fig. 8 Abb. 8
Fig. 9 Abb. 9

Similar content being viewed by others

References

  • Anonymus (2004) www.leaderplus.de/leaderplus/leaderforum/LEADERforum_2004-1_Aktiv.pdf, see also www.sema-gmbh.de

  • Andrady AL, Hamid SH, Hu X, Torikai AJ (1998) Effects of increased solar ultraviolet radiation on materials. J  Photoch Photobio  B 46:96–103

    Article  CAS  Google Scholar 

  • Becker HGO (ed), Böttcher H, Dietz F, Rehorek D, Roewer G, Schiller K, Timpe HJ (1991) Einführung in die Photochemie. Deutscher Verlag der Wissenschaften, Berlin

    Google Scholar 

  • Beyer M, Bäurich C, Fischer K (1995) Mechanismen der licht- und wärmeinduzierten Vergilbung von Faserstoffen. Das Papier 49:V8–V14

    CAS  Google Scholar 

  • Beyer M, Krasselt K, Fischer K, Jacob H, Süss H-U (2001) Brightness reversion of bleached mechanical pulps – New stabilizing substances and mechanical investigations. In: Proceedings of the 11th international symposium on wood and pulping chemistry, Nice, vol.  III, pp  215–218

  • Charter HA (1996) The chemistry of paper preservation: Part  2. The yellowing of paper and conservation bleaching. J  Chem Educ 73:1068–1073

    Article  Google Scholar 

  • Derbyshire H, Miller ER (1981) The photodegradation of wood during solar irradiation. Holz Roh- Werkst 39:341–350

    Article  CAS  Google Scholar 

  • Derbyshire H, Miller ER, Turkulin H (1995) Investigations into the photodegradation of wood using microtensile testing, Part  1: The application of microtensile testing to measurement of photodegradation rates. Holz Roh- Werkst 53:339–345

    Google Scholar 

  • DIN 6174 (1979) Farbmetrische Bestimmung von Farbabständen bei Körperfarben nach der CIELAB-Formel. Deutsches Institut für Normen, Beuth Verlag, Berlin

  • Durovič M, Zellinger J (1993) Chemical processes in the bleaching of paper in library and archival collections. Restaurator 14:78–101

    Article  Google Scholar 

  • Feist WC, Hon DN-S (1984) Chemistry of weathering and protection. In: Rowell R (ed) Chemistry of solid wood, Advances in Chemistry Series No.  207. American Chemical Society, Washington, DC, pp  401–451

    Chapter  Google Scholar 

  • Gindl W, Dessipri E, Wimmer R (2002) Using uv-microscopy to study diffusion of melamine-urea-formaldehyde resin in cell walls of spruce wood. Holzforschung 56:103–107

    Article  CAS  Google Scholar 

  • Gsöls I, Müller U, Steiner M, Rätzsch M (2002) Interaction between resins and wood. In: Lignovisionen, issue  4/special edition (Proceedings of the international symposium on wood based materials wood composites and wood chemistry, Vienna, 19–20 September 2002), BOKU, Vienna, November 2003, pp  193–201

  • Gsöls I, Rätzsch M, Ladner C (2003) Interactions between wood and melamine resins – effect on dimensional stability properties and fungal attack. In: Proceedings of the first european conference on wood modification, Ghent, Belgium, pp  221–225

  • Hansmann C, Deka M, Wimmer R, Gindl W (2006) Artificial weathering of wood surfaces modified by melamine resins. Holz Roh- Werkst 64:198–203

    Article  CAS  Google Scholar 

  • Harrick N (1980) Internal reflection spectroscopy. Interscience, New York

    Google Scholar 

  • Hayoz P, Peter W, Rogez D (2003) A new innovative stabilization method for the protection of natural wood. Prog Org Coat 48:297–309

    Article  CAS  Google Scholar 

  • Heitner C (1993) Light-induced yellowing of wood containing papers. In: Heitner C, Scaiano JC (eds) Photochemistry of lignocellulosic materials, ACS symposium series 531. American Chemical Society, Washington, DC, pp  3–25

    Chapter  Google Scholar 

  • Hillis WE (1971) Distribution, properties and formation of some wood extractives. Wood Sci Technol 5:272–289

    Article  CAS  Google Scholar 

  • Hon DNS (1981) Yellowing of modern papers. In: Williams JC (ed) Preservation of paper and textiles of historic and artistic value II. American Chemical Society, Washington DC, pp  119–141

    Chapter  Google Scholar 

  • Hon DNS (2001) Weathering and photochemistry of wood. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry, 2nd edn. Marcel Dekker, New York, pp  512–546

    Google Scholar 

  • Hon DNS, Minemura N (2001) Color and discoloration. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry, 2nd edn. Marcel Dekker, New York, pp  385–442

    Google Scholar 

  • Hon DNS, Ifju G (1978) Measuring penetration of light into wood by detection of photo-induced free radicals. Wood Sci 11:118–127

    CAS  Google Scholar 

  • Inoue M, Ogata S, Nishikawa M, Otsuka Y, Kawai S, Norimoto M (1993) Dimensional stability, mechanical properties, and color changes of a low molecular weight melamine formaldehyde resin impregnated wood. Mokuzai Gakkaishi 39:181–189

    CAS  Google Scholar 

  • Johnston LJ, Wong K (1984) Surface chemistry: 13C enrichment by photolysis on silica gel. Can J Chem 62:1999–2005

    Article  CAS  Google Scholar 

  • Kataoka Y, Kiguchi M, Fujiwara T (2005) The effects within-species and between-species variation in wood density on the photodegradation depth profiles of sugi (Cryptomerica japonica) and hinoki (Chamaecyparis obtusa). J  Wood Sci 51: 531–536

    Google Scholar 

  • Kataoka Y, Kiguchi M, Williams RS, Evans PD (2007) Violet ligth causes photodegradation of wood beyond the zone affected by ultraviolet radiation. Holzforschung 61:23–27

    Article  CAS  Google Scholar 

  • Kiguchi M, Evans PD (1998) Photostabilisation of wood surfaces using a grafted benzophenone UV absorber. Poly Degrad Stabil 61:33–45

    Article  CAS  Google Scholar 

  • Larkin PJ, Makowski MP, Colthup NB, Flood LA (1998) Vibrational analysis of some important group frequencies of melamine derivatives containing methoxymethyl, and carbamate substituents: mechanical coupling of substituent vibrations with triazine ring modes. Vib Spectrosc 17:53–72

    Article  CAS  Google Scholar 

  • Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm−1. J  Polym Sci 39:269–278

    Article  CAS  Google Scholar 

  • Lukowsky D (1999) Holzschutz mit Melaminharzen. Dissertation. University of Hamburg

  • Mahoney LR (1969) Antioxidantien. Angew Chem 81/15:555–563

    Article  Google Scholar 

  • Müller U, Steiner M, Rätzsch M (2002) Photostabilization of wood without topcoat – influence of UV-absorber and radical scavenger. In: Lignovisionen, issue 4/special edition (Proceedings of the international symposium on wood based materials wood composites and wood chemistry, Vienna, 19–20 September 2002), BOKU, Vienna, November 2003, pp  329–336

  • Müller U, Rätzsch M, Schwanninger M, Steiner M, Zöbl H (2003) Yellowing and IR-changes of spruce wood as result of UV-irradiation. J  Photoch Photobio  B 69:97–105

    Article  Google Scholar 

  • Norimoto M (1996) Viscoelastic properties of chemically modified wood. In: Hon DN-S (ed) Chemical modification of lignocellulosic materials. Marcel Dekker, New York, pp  311–330

    Google Scholar 

  • Norimoto M (2001) Chemical modification of wood. In: Hon DNS, Shiraishi N (eds) Wood and Cellulosic Chemistry. Part  I: Structure and Chemistry. Marcel Dekker, New York Basel, pp  3–53

    Google Scholar 

  • Oltean L, Teischinger A, Hansmann C (2008) Wood surface discolouration due to simulated indoor sunlight exposure. Holz Roh- Werkst 66:51–56

    Article  Google Scholar 

  • Pandey KK (2005) A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polym Degrad Stabil 87:375–379

    Article  CAS  Google Scholar 

  • Pittman C, Kim M, Nicholas D, Wang L, Kabir A, Schultz T, Ingram L (1994) Wood enhancement treatments  I. Impregnation of southern yellow pine with melamine-formaldehyde and melamine-ammeline-formaldehyde resins. J  Wood Chem Technol 14:577–603

    Article  CAS  Google Scholar 

  • Rabek JF (1995) Polymer degradation. Chapman and Hall, London

    Google Scholar 

  • Rapp AO, Peek RD (1999) Melaminharzimprägniertes sowie mit Wetterschutzlasur oberflächenbehandeltes und unbehandeltes Vollholz während zweijähriger Freilandbewitterung. Holz Roh- Werkst 57:331–339

    Article  CAS  Google Scholar 

  • Rosca I, Bergmann I, Tanczos I (2005) Penetrability of resins and polyethylene glycols in ammonia treated spruce wood. Holz Roh- Werkst 63:403–407

    Article  CAS  Google Scholar 

  • Schaller C, Rogez D (2007) New approaches in wood coating stabilization. J  Coat Technol Res 4:401–409

    Article  CAS  Google Scholar 

  • Scherzer T (2002) Depth profling of the degree of cure during the photopolymerization of acrylates studied by real-time FT-IR attenuated total reflection spectroscopy. Appl Spectrosc 56:1403–1412

    Article  CAS  Google Scholar 

  • Scott GG (1990) Polymer degradation and stabilization. Elsevier Applied Science, London

    Google Scholar 

  • Tolvaj L, Mitsui K (2005) Light source dependence of the photodegradation of wood. J  Wood Sci 51:468–473

    CAS  Google Scholar 

  • Turkulin H, Sell J (2002) Tensile properties and fractography of weathered wood. Holz Roh- Werkst 60:96–105

    Article  Google Scholar 

  • Turkulin H, Derbyshire H, Miller ER (2004) Investigations into the photodegradation of wood using microtensile testing. Part  5: The influence of moisture on photodegradation rates. Holz Roh- Werkst 62:307–312

    Article  CAS  Google Scholar 

  • Wallström L, Lindberg KAH (1999) Measurement of cell wall penetration in wood of water-based chemicals using SEM/EDS and STEM/EDS technique. Wood Sci Technol 33:111–122

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Competence Centre for Wood Composites and Wood Chemistry (Wood  K plus), funded by the Austrian Federal Government and the provincial governments of Upper Austria, Lower Austria and Carinthia. Special thanks are due to AMI Agrolinz Melamine International GmbH for providing and improving the new melamine resins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, U., Steiner, M. Colour stabilisation of wood composites using polyethylene glycol and melamine resin. Eur. J. Wood Prod. 68, 435–443 (2010). https://doi.org/10.1007/s00107-009-0386-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-009-0386-1

Keywords

Navigation