Skip to main content
Log in

Morphometrische Studie zur Optimierung der Implantationstechnik zentraler Hörprothesen

Optimization of microsurgical operation technique to insert auditory brainstem implants, taking into account the results of a morphometric study

  • Originalien
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Wissensstand

Bei beidseitigem retrokochleären Hörverlust ist durch Hörprothesen zur elektrischen Reizung der Hörkernregion eine begrenzte Wiederherstellung des Hörvermögens möglich. Zu den Lageverhältnissen der Zielregion, v. a. am Ventrikelboden, lagen nur wenige Untersuchungen vor.

Ziele

Erhöhte Operationssicherheit durch genauere anatomische Orientierung zur Zielregion für mikrochirurgische Zugänge von lateral und medial oder ein stereotaktisches Vorgehen.

Methodik und Ergebnisse

Landmarken zur Elektrodenplatzierung wurden an einer Serie formalinfixierter menschlicher Hirnstämme untersucht und vermessen (n=28). Die morphometrisch in ihrer Variabilität erfassten Daten ermöglichen eine genauere Ziellokalisation als die elektrophysiologische Kontrolle und damit eine weitere Präzisierung praktizierter Operationstechniken von lateral.

Fazit

Die genauere Zielpunktlokalisation erhöht die Implantationssicherheit. Der neue Mittellinienzugang bietet die Chance das Indikationsspektrum der Implantate zu erweitern. Die Integration der erfassten Daten in stereotaktische Verfahren ist denkbar.

Abstract

State of the art

The surgical placement of auditory brainstem implants to stimulate the cochlear nuclear region in patients with acquired bilateral retrocochlear deafness allows limited restitution of hearing. However, there have been few studies on the topographical relations in the target region, particularly the floor of the IVth ventricle.

Topic of the study

Is it possible to obtain more precise anatomical data in order to improve the surgical approaches and techniques for the placement of auditory brainstem implants?

Aims

To obtain a more precise topo- anatomical orientation in the target region for microsurgical lateral and midline approaches or a stereotactic operative strategy.

Methods and results

Landmarks for the placement of an auditory brainstem implant via the IVth ventricle were examined and measured in a series of formalin-fixed human brainstems (n=28). These data, and knowledge of their variability, allow a more precise surgical lateral approach. It is essential to precisely localise the target region, as it can only be partly discerned under the microscope during an operation. For this reason, to date its precise localisation has been determined only electrophysiologically.

Conclusion

Exact target localisation improves safety. From an anatomical point of view the midline approach gives the chance to enlarge the indication spectrum for an implant. The anatomical data obtained here could also be integrated into a stereotactic surgical strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Bogucki J, Gielecki J, Czernicki Z (1997) The anatomical aspects of a surgical approach through the floor of the fourth ventricle. Acta Neurochir 139: 1014–1019

    CAS  Google Scholar 

  2. Brackmann DE, Hitselberger WE, Nelson RA et al. (1993) Auditory brainstem implant: I. Issues in surgical implantation. Otolaryngol Head Neck Surg 108: 624–633

    CAS  PubMed  Google Scholar 

  3. Briggs RJ, Fagan P, Atlas M et al. (2000) Multichannel auditory brainstem implantation: the Australian experience. J Laryngol Otol Suppl 27: 46–49

    PubMed  Google Scholar 

  4. Dublin W (1982) The cochlear nuclei revisited. Otolaryngol Head Neck Surg 90: 744–760

    CAS  PubMed  Google Scholar 

  5. Federspil PA, Stallkamp J, Plinkert PK (2001) Robotik. Eine neue Dimension in der HNO-Heilkunde. HNO 49: 505–513

    CAS  PubMed  Google Scholar 

  6. Fuse G (1913) Das Ganglion ventrale and das Auditory tubercle bei einigen Säugern und beim Menschen. Arbeiten aus dem Hirnanatomischen Institut in Zürich 7: 1–210

  7. Gunkel AR, Thumfart WF, Freysinger W (2000) Computerunterstützte 3D-Navigationssysteme. Überblick und Standortbestimmung. HNO 48: 75–90

    CAS  PubMed  Google Scholar 

  8. Heermann R, Mack KF, Issing PR et al. (2001) Schädelbasischirurgie mit einem optoelektrischen Navigationssystem. HNO 49: 1019–1025

    CAS  PubMed  Google Scholar 

  9. Jacob U, Mrosack B, Gerhardt HJ (1991) Der chirurgische Zugang zum Kochlearis-Kerngebiet. Anat Anz 173: 93–100

    CAS  PubMed  Google Scholar 

  10. Jackson KB, Mark G, Helms J et al. (2002) An auditory brainstem implant system. Am J Audiol 11: 128–133

    PubMed  Google Scholar 

  11. Kuchta J, Behr R, Walger M et al. (2002) Rehabilitation of hearing and communication functions in patients with NF 2. Acta Neurochir Suppl 79: 109–111

    CAS  PubMed  Google Scholar 

  12. Kuroki A, Moller AR (1995) Microsurgical anatomy around the foramen of Luschka in relation to intraoperative recording of auditory evoked potentials from the cochlear nuclei. J Neurosurg 82: 933–939

    CAS  PubMed  Google Scholar 

  13. Lang J Jr,Ohmachi N, Lang J Sen (1991) Anatomical landmarks of the rhomboid fossa (floor of the 4 th ventricle), its length and its width. Acta Neurochir 113: 84–90

    Google Scholar 

  14. Laszig R, Sollmann WP, Charachon R et al. (1994) Implantation sur sur le noyau cochléaire à propos d’un malade atteint de neurinome bilatéral. Ann Otolaryngol Chir Cervicofac 111: 315–318

    CAS  PubMed  Google Scholar 

  15. Laszig R, Sollmann WP, Marangos N (1995) The restoration of hearing in neurofibromatosis type 2. J Laryngol Otol 109: 385–389

    CAS  PubMed  Google Scholar 

  16. Lenarz T, Moshrefi M, Matthies C et al. (2001) Auditory brainstem implant: part I. Auditory performance and its evolution over time. Otol Neurotol 22: 823–833

    CAS  PubMed  Google Scholar 

  17. Lenarz M, Matthies C, Lesinski-Schiedat A et al. (2002) Auditory brainstem implant part II: subjective assessment of functional outcome. Otol Neurotol 23: 694–697

    PubMed  Google Scholar 

  18. Luetje CM, Whittaker K, Geier L et al. (1992) Feasibility of multichannel human cochlear nucleus stimulation. Laryngoscope 102: 23–25

    CAS  PubMed  Google Scholar 

  19. Matsushima T, Rhoton AL (1996) Microsurgical anatomy of the fourth ventricle. In: Wilkins H, Rengachary SS (Eds.) Neurosurgery, 2nd Edn., vol 1. Mc Graw-Hill, New York, pp 1155–1171

  20. Matsushima T, Rhoton AL Jr, Lenkey C (1982) Microsurgery of the fourth ventricle: Part I. Microsurgical anatomy. Neurosurgery 11: 631–667

    CAS  PubMed  Google Scholar 

  21. McElveen JT, Hitselberger WE, House WF et al. (1985) Electrical stimulation of cochlear nucleus in man. Am J Otol 6: 88–91

    Google Scholar 

  22. McElveen JT, Hitselberger WE, House WF (1987) Surgical accessibility of the cochlear nucleus complex in man: surgical landmarks. Otolaryngol Head Neck Surg 96: 135–140

    PubMed  Google Scholar 

  23. Monsell EM, McElveen JT, Hitselberger WE, House WF (1987) Surgical approaches to the human cochlear nuclear complex. Am J Otol 8: 450–455

    CAS  PubMed  Google Scholar 

  24. Moore JK (1987) The human auditory brain stem: a comparative view. Hear Res 29: 1–32

    CAS  PubMed  Google Scholar 

  25. Moore JK, Osen KK (1979) The cochlear nuclei in man. Am J Anat 154: 393–418

    CAS  PubMed  Google Scholar 

  26. Nevison B, Laszig R, Sollmann WP et al. (2002) Results from a European clinical investigation of the Nucleus multichannel auditory brainstem implant. Ear Hear 23: 170–183

    PubMed  Google Scholar 

  27. Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. JB Lippincott, Philadelphia

  28. Otto SR, Brackmann DE, Hitselberger WE et al. (2002) Multichannel auditory brainstem implant: update on performance in 61patients. J Neurosurg 96: 1063–1071

    PubMed  Google Scholar 

  29. Quester R, Schröder R (1997) The shrinkage of the human brain stem during formalin fixation and embedding in paraffin. J Neurosci Methods 75: 81–89

    CAS  PubMed  Google Scholar 

  30. Seldon HL, Clark GM (1991) Human cochlear nucleus: comparison of Nissl-stained neurons from deaf and hearing patients. Brain Res 551: 185–194

    CAS  PubMed  Google Scholar 

  31. Stenzel CR (1992) Volumetrische and densitometrische Messungen zur Ontogenese subcorticaler Zentren der menschlichen Hörbahn. MD Thesis, Cologne

  32. Terr LI, Edgerton BJ (1985) Three-dimensional reconstruction of the cochlear nuclear complex in humans. Arch Otolaryngol 111: 495–501

    CAS  PubMed  Google Scholar 

  33. Terr LI, Edgerton BJ (1985) Surface topography of the cochlear nuclei in humans: two- and three-dimensional analysis. Hear Res 17: 51–59

    CAS  PubMed  Google Scholar 

Download references

Danksagung

Die Untersuchungen wurden mit finanzieller Unterstützung durch das Bundesministerium für Bildung und Forschung durchgeführt, Förderkennzeichen: 01 VJ 9310/1 (Dr. med. R. Quester)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Quester.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quester, R., Schröder, R. & Klug, N. Morphometrische Studie zur Optimierung der Implantationstechnik zentraler Hörprothesen. HNO 52, 706–713 (2004). https://doi.org/10.1007/s00106-003-0985-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-003-0985-9

Schlüsselwörter

Keywords

Navigation