Skip to main content
Log in

Stammzellderivate bei Hautschäden nach Strahlenexposition

Stem cell derived therapy for cutaneous radiation exposure

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Strahlenbedingte Schädigungen der Haut führen zu einer Reihe deterministischer Effekte, so u. a. zu inflammatorischen Reaktionen und Zelldepletion. Daraus entstehen in einer bestimmten Reihenfolge distinkte klinische Symptome. Die Behandlungsansätze sind immer noch eingeschränkt, eine Restitutio ad integrum der betroffenen Bereiche ist bisher nicht möglich. In den vergangenen Jahren hat die experimentelle Forschung zur Generierung und Verabreichung autologer Stammzellen (SC) auch im Bereich der strahlenbedingten Läsionen weitere Fortschritte erzielt. Anhand der im Beitrag besprochenen Evidenz wird deutlich, dass die Stammzelltransplantationen nicht unbedingt nur durch den Ersatz geschädigter Zellen wirken, sondern höchstwahrscheinlich im Wesentlichen durch einen parakrinen Effekt. Die transplantierten Zellen sezernieren bioaktive Faktoren, welche die Stimulierung von Host-Stammzellen initiieren und so zur Regeneration geschädigter Gewebe beitragen. Transplantierte Stammzellen produzieren trophische Faktoren, die auch die systemische Heilung nach Strahlenschädigungen unterstützen. Ferner kann die Applikation von Stammzellsekretomen in Form von konditionierten Medien, die Mikrovesikel oder Exosome enthalten, ebenso wirksam sein wie die Gabe der Stammzellen selbst. Diese Hypothese wird unterstützt durch Studien, in denen sich zellfreie hMSC(humane mesenchymale SC)-Derivate als zur Wundheilung geeignet erwiesen haben, sodass eine Gabe intakter Zellen nicht erforderlich war. In einem Ischämiemodell (Maus, Hinterpfote) konnten die Effekte einer MSC-Injektion auf Reperfusion und Regeneration den parakrinen Mechanismen und der lokalen Freisetzung arteriogener Zytokine zugeschrieben werden. Aus der weiteren Evaluierung des parakrinen Potenzials autologer SC können sich weitere therapeutische Optionen ergeben, sowohl für akute Schädigungen als auch für die langfristigen, chronischen Folgen kutaner Strahlenschäden.

Abstract

Radiation injury to skin results in a variety of deterministic effects including inflammatory reactions and cell depletion leading to distinct clinical symptoms following a defined time pattern. Therapeutic approaches are still limited, a complete restitution of affected areas is so far impossible. In the last few years increasing experimental knowledge about acquisition and administration of autologous stem cells also in the field of radiation injuries has been obtained. Evidence reviewed in this article shows that the beneficial effects of stem cell transplantation are not necessarily due to the replacement of damaged cells by transplanted cells but most probably due in the most part to a paracrine effect. Transplanted cells secrete bioactive factors that initiate the stimulation of the host stem cells to regenerate the damaged tissues. Transplanted stem cells produce trophic factors which aid the systemic healing of the victims. Furthermore, administration of stem cell secretomes in the form of conditioned media containing microvesicles or exosomes can be as effective as administering the stem cells. This hypothesis is supported by findings that cell-free derivatives from hMSCs were useful for wound healing purposes and could circumvent the need for intact cells. Furthermore, the beneficial effect of MSC injection on reperfusion and tissue damage in a mouse model of hind limb ischemia could be attributed to paracrine mechanisms with local release of arteriogenic cytokines. Further evaluation of the paracrine potential of autologous stem cells may open new means for treatment of acute as well as chronic sequelae of cutaneous radiation injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Daniel J (1896) The X-rays. Science 3(67):562–563

    Article  PubMed  CAS  Google Scholar 

  2. Drury HC (1896) Dermatitis caused by Roentgen X rays. Br Med J 2(1871):1377–1378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Rezvani M et al (2002) Evidence for humoral effects on the radiation response of rat foot skin. Br J Radiol 75(889):50–55

    PubMed  CAS  Google Scholar 

  4. Teramoto K et al (2005) Teratoma formation and hepatocyte differentiation in mouse liver transplanted with mouse embryonic stem cell-derived embryoid bodies. Transplant Proc 37(1):285–286

    Article  PubMed  CAS  Google Scholar 

  5. Fujikawa T et al (2005) Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 166(6):1781–1791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Prokhorova TA et al (2009) Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev 18(1):47–54

    Article  PubMed  CAS  Google Scholar 

  7. Heins N et al (2004) Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells 22(3):367–376

    Article  PubMed  Google Scholar 

  8. Hanson C, Caisander G (2005) Human embryonic stem cells and chromosome stability. APMIS 113(11–12):751–755

    Google Scholar 

  9. Silva Meirelles L da, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119(Pt 11):2204–2213

    Article  CAS  Google Scholar 

  10. Hennrick KT et al (2007) Lung cells from neonates show a mesenchymal stem cell phenotype. Am J Respir Crit Care Med 175(11):1158–1164

    Article  PubMed  CAS  Google Scholar 

  11. Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  PubMed  CAS  Google Scholar 

  12. Saito T et al (2002) Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg 74(1):19–24 (discussion 24)

    Article  PubMed  Google Scholar 

  13. Ra JC et al (2011) Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev 20(8):1297–1308

    Article  PubMed  CAS  Google Scholar 

  14. Lee OK et al (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103(5):1669–1675

    Article  PubMed  CAS  Google Scholar 

  15. Chong PP et al (2012) Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells. J Orthop Res 30(4):634–642

    Article  PubMed  CAS  Google Scholar 

  16. Dubois SG et al (2008) Isolation of human adipose-derived stem cells from biopsies and liposuction specimens. Methods Mol Biol 449:69–79

    PubMed  Google Scholar 

  17. Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100(9):1249–1260

    Article  PubMed  CAS  Google Scholar 

  18. Bertani N et al (2005) Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray. J Cell Sci 118(Pt 17):3925–3936

    Article  PubMed  CAS  Google Scholar 

  19. De Ugarte DA et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3):101–109

    Article  Google Scholar 

  20. Wang HS et al (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22(7):1330–1337

    Article  PubMed  Google Scholar 

  21. Peng HH et al (2007) Isolation and differentiation of human mesenchymal stem cells obtained from second trimester amniotic fluid; experiments at Chang Gung Memorial Hospital. Chang Gung Med J 30(5):402–407

    PubMed  Google Scholar 

  22. Marynka-Kalmani K et al (2010) The lamina propria of adult human oral mucosa harbors a novel stem cell population. Stem Cells 28(5):984–995

    PubMed  CAS  Google Scholar 

  23. Davies LC et al (2010) A multipotent neural crest-derived progenitor cell population is resident within the oral mucosa lamina propria. Stem Cells Dev 19(6):819–830

    Article  PubMed  CAS  Google Scholar 

  24. Zhang Q et al (2009) Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 183(12):7787–7798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Balic A et al (2009) Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars. Bone 46(6):1639–1651

    Article  Google Scholar 

  26. Girard SD et al (2011) Isolating nasal olfactory stem cells from rodents or humans. J Vis Exp 54

  27. Reynolds AJ, Jahoda CA (1991) Hair follicle stem cells? A distinct germinative epidermal cell population is activated in vitro by the presence of hair dermal papilla cells. J Cell Sci 99(Pt 2):373–385

    PubMed  Google Scholar 

  28. Bharadwaj S et al (2013) Multi-potential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells

  29. Centeno CJ et al (2011) Safety and complications reporting update on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell Res Ther 6(4):368–378

    Article  PubMed  CAS  Google Scholar 

  30. Devine SM et al (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 101(8):2999–3001

    Article  PubMed  CAS  Google Scholar 

  31. François S et al (2006) Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 24(4):1020–1029

    Article  PubMed  Google Scholar 

  32. Chapel A et al (2003) Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med 5(12):1028–1038

    Article  PubMed  Google Scholar 

  33. Deng W et al (2005) Engrafted bone marrow-derived flk-(1+) mesenchymal stem cells regenerate skin tissue. Tissue Eng 11(1–2):110–119

    Google Scholar 

  34. François S et al (2007) Human mesenchymal stem cells favour healing of the cutaneous radiation syndrome in a xenogenic transplant model. Ann Hematol 86(1):1–8

    Article  PubMed  Google Scholar 

  35. Bensidhoum M et al (2005) Therapeutic effect of human mesenchymal stem cells in skin after radiation damage. J Soc Biol 199(4):337–341

    Article  PubMed  Google Scholar 

  36. Agay D et al (2010) Multipotent mesenchymal stem cell grafting to treat cutaneous radiation syndrome: development of a new minipig model. Exp Hematol 38(10):945–956

    Article  PubMed  Google Scholar 

  37. Mishra PJ, Mishra PJ, Banerjee D (2012) Cell-free derivatives from mesenchymal stem cells are effective in wound therapy. World J Stem Cells 4(5):35–43

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fu X et al (2007) Adipose tissue extract enhances skin wound healing. Wound Repair Regen 15(4):540–548

    Article  PubMed  Google Scholar 

  39. Ai G et al (2002) The experimental study of bone marrow mesenchymal stem cells on the repair of skin wound combined with local radiation injury. Zhonghua Yi Xue Za Zhi 82(23):1632–1636

    PubMed  Google Scholar 

  40. Zhang Y et al (2012) Repair and regeneration of skin injury by transplanting microparticles mixed with Wharton’s jelly and MSCs from the human umbilical cord. Int J Low Extrem Wounds

  41. Fathke C et al (2004) Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells 22(5):812–822

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chunmeng S et al (2004) Effects of dermal multipotent cell transplantation on skin wound healing. J Surg Res 121(1):13–19

    Article  PubMed  Google Scholar 

  43. Forcheron F et al (2012) Autologous adipocyte derived stem cells favour healing in a minipig model of cutaneous radiation syndrome. PLoS One 7(2):e31694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kotenko K et al (2012) Successful treatment of localised radiation lesions in rats and humans by mesenchymal stem cell transplantation. Radiat Prot Dosimetry 151(4):661–665

    Article  PubMed  CAS  Google Scholar 

  45. Kotenko KB et al (2011) Mesenchymal stem cells transplantation in the treatment of radiation skin lesions. Patol Fiziol Eksp Ter 1:20–25

    PubMed  Google Scholar 

  46. Collawn SS et al (2012) Adipose-derived stromal cells accelerate wound healing in an organotypic raft culture model. Ann Plast Surg 68(5):501–504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kim WS et al (2009) Antiwrinkle effect of adipose-derived stem cell: activation of dermal fibroblast by secretory factors. J Dermatol Sci 53(2):96–102

    Article  PubMed  CAS  Google Scholar 

  48. Li F et al (2010) Apoptotic cells activate the „phoenix rising“ pathway to promote wound healing and tissue regeneration. Sci Signal 3(110):ra13

    PubMed  PubMed Central  Google Scholar 

  49. Tomuleasa C et al (2010) Mesenchymal stem cell irradiation in culture engages differential effect of hyper-fractionated radiotherapy for head and neck cancers. J BUON 15(2):348–356

    PubMed  CAS  Google Scholar 

  50. Bushmanov A et al (2012) Experience of contemporary treatment of radiation burns in individuals subjected to ionizing radiation. Med Tr Prom Ekol 10:20–27

    PubMed  Google Scholar 

  51. Kim SS et al (2010) Reconstruction of the irradiated orbit with autogenous fat grafting for improved ocular implant. Plast Reconstr Surg 126(1):213–220

    Article  PubMed  CAS  Google Scholar 

  52. Akita S et al (2010) Mesenchymal stem cell therapy for cutaneous radiation syndrome. Health Phys 98(6):858–862

    Article  PubMed  CAS  Google Scholar 

  53. Akita S et al (2012) Early experiences with stem cells in treating chronic wounds. Clin Plast Surg 39(3):281–292

    Article  PubMed  Google Scholar 

  54. Akita S et al (2010) Noncultured autologous adipose-derived stem cells therapy for chronic radiation injury. Stem Cells Int 2010:532704

    PubMed  PubMed Central  Google Scholar 

  55. Baranov AE, Gus’kova AK, Protasova TG (1991) Experience in treating the victims of the accident at the Chernobyl Atomic Electric Power Station and the immediate disease outcomes. Med Radiol (Mosk) 36(3):29–32

    Google Scholar 

  56. Benderitter M et al (2010) New emerging concepts in the medical management of local radiation injury. Health Phys 98(6):851–857

    Article  PubMed  CAS  Google Scholar 

  57. Bey E et al (2007) Treatment of radiation burns with surgery and cell therapy. A report of two cases. Bull Acad Natl Med 191(6):971–978 (discussion 979)

    PubMed  Google Scholar 

  58. Bey E et al (2010) Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations. Wound Repair Regen 18(1):50–58

    Article  PubMed  Google Scholar 

  59. Lataillade JJ et al (2007) New approach to radiation burn treatment by dosimetry-guided surgery combined with autologous mesenchymal stem cell therapy. Regen Med 2(5):785–794

    Article  PubMed  CAS  Google Scholar 

  60. Muller K, Meineke V (2010) Advances in the management of localized radiation injuries. Health Phys 98(6):843–850

    Article  PubMed  CAS  Google Scholar 

  61. Cummings RJ et al (2009) Migration of skin dendritic cells in response to ionizing radiation exposure. Radiat Res 171(6):687–697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kinnaird T et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 101(12):1543−1549

    Article  Google Scholar 

  63. Burdon TJ et al (2011) Bone marrow stem cell derived paracrine factors for regenerative medicine: current perspectives and therapeutic potential. Bone Marrow Res 2011:207326

    PubMed  PubMed Central  Google Scholar 

  64. Camussi G, Deregibus MC, Cantaluppi V (2013) Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Biochem Soc Trans 41(1):283–287

    Article  PubMed  CAS  Google Scholar 

  65. Rehman J et al (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109(10):1292–1298

    Article  PubMed  Google Scholar 

  66. Aslam M et al (2009) Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med 180(11):1122–1130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Camussi G, Deregibus MC, Tetta C (2010) Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information. Curr Opin Nephrol Hypertens 19(1):7–12

    Article  PubMed  CAS  Google Scholar 

  68. Gatti S et al (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26(5):1474−1483

    Article  PubMed  CAS  Google Scholar 

  69. Chaput N et al (2004) Exosome-based immunotherapy. Cancer Immunol Immunother 53(3):234–239

    Article  PubMed  CAS  Google Scholar 

  70. Chen HI et al (2007) Neural stem cells as biological minipumps: a faster route to cell therapy for the CNS? Curr Stem Cell Res Ther 2(1):13–22

    Article  PubMed  CAS  Google Scholar 

  71. Chuang TJ et al (2012) Effects of secretome obtained from normoxia-preconditioned human mesenchymal stem cells in traumatic brain injury rats. J Trauma Acute Care Surg 73(5):1161−1167

    Article  PubMed  CAS  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Rezvani gibt an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rezvani BSc, MSc, PhD, CBiol, FSB.

Zusatzmaterial online

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezvani, M. Stammzellderivate bei Hautschäden nach Strahlenexposition. Hautarzt 64, 910–916 (2013). https://doi.org/10.1007/s00105-013-2629-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-013-2629-7

Schlüsselwörter

Keywords

Navigation