Skip to main content
Log in

Pathophysiologie der chronischen Wunde

Pathogenesis of chronic wounds

  • Leitthema
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Chronische Wunden und ihre Therapie sind nicht nur ein wichtiges medizinisches, sondern vor allem auch ein großes gesellschaftliches Problem, denn sie führen zu einer sozialen Isolierung der Patienten, zu lang andauernder Arbeitsunfähigkeit und sie beeinträchtigen die Lebensqualität der Betroffenen nachhaltig. Um suffiziente Therapiemöglichkeiten zu entwickeln, ist das Verständnis der Wundheilungsvorgänge sowie der Faktoren, die die physiologische Wundheilung stören, eine wichtige Grundvoraussetzung. Diese Arbeit soll einen Überblick über die wichtigsten intrinsischen und extrinsischen Faktoren geben, die eine physiologische Wundheilung stören können und so zur Entwicklung einer chronischen Wunde führen. Ansatzpunkte, die sich hieraus für eine molekulare Beeinflussung der Wundheilung ergeben, werden dargestellt.

Abstract

Chronic, nonhealing wounds and their therapy are not only a medical problem but a severe economic one as well. Such wounds have a great effect on quality of life. Basic research has enhanced our understanding of the stimulation and inhibition of wound healing and provides the basis for introducing new and innovative treatment methods. This paper reviews the most relevant in- and extrinsic factors that disturb physiologic wound healing to result in chronic nonhealing wounds. In addition, molecular intervention modalities targeting various aspects of wound repair are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Augustin HG (2003) Angiogenesis research – quo vadis? Ophthalmologe 100: 104–110

    Article  CAS  PubMed  Google Scholar 

  2. Badiavas EV, Falanga V (2003) Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol 139: 510–516

    Article  PubMed  Google Scholar 

  3. Bankey P, Fiegel V, Singh R et al. (1989) Hypoxia and endotoxin induce macrophage-mediated suppression of fibroblast proliferation. J Trauma 29: 972–980

    Article  CAS  PubMed  Google Scholar 

  4. Beck E, Duckert F, Ernst M (1961) The influence of fibrin stabilizing factor on the growth of fibroblasts in vitro and wound healing. Thromb Diath Haemorrh 6: 485–491

    CAS  PubMed  Google Scholar 

  5. Bevilacqua MP, Pober JS, Wheeler ME et al. (1985) IL-1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines. J Clin Invest 76: 2003–2011

    Article  CAS  PubMed  Google Scholar 

  6. Blakytny R, Jude E (2006) The molecular biology of chronic wounds and delayed healing in diabetes. Diabet Med 23: 594–608

    Article  CAS  PubMed  Google Scholar 

  7. Bollinger A, Leu AJ, Hoffmann U, Franzeck UK (1997) Microvascular changes in venous disease: an update. Angiology 48: 27–32

    CAS  PubMed  Google Scholar 

  8. Bowler PG (2002) Wound pathophysiology, infection and therapeutic options. Ann Med 34: 419–427

    Article  CAS  PubMed  Google Scholar 

  9. Brauchle M, Fässler R, Werner S (1995) Suppression of keratinocyte growth factor expression by glucocorticoids in vitro and during wound healing. J Invest Dermatol 105: 579–584

    Article  CAS  PubMed  Google Scholar 

  10. Braun-Falco M (2002) Gene therapy concepts for promoting wound healing. Hautarzt 53: 238–243

    Article  CAS  PubMed  Google Scholar 

  11. Brem H, Tomic-Canic M (2007) Cellular and molecular basis of wound healing in diabetes. J Clin Invest 117: 1219–1222

    Article  CAS  PubMed  Google Scholar 

  12. Broughton G 2nd, Janis JE, Attinger CE (2006) The basic science of wound healing. Plast Reconstr Surg [Suppl 7] 117: 12–34

    Google Scholar 

  13. Broughton G 2nd, Janis JE, Attinger CE (2006) Wound healing: an overview. Plast Reconstr Surg 117: 1–32

    Article  CAS  Google Scholar 

  14. Brush J, Lipnick SL, Phillips T et al. (2007) Molecular mechanisms of late normal tissue injury. Semin Radiat Oncol 17: 121–130

    Article  PubMed  Google Scholar 

  15. Cole J, Tsou R, Wallace K et al. (2001) Comparison of normal human skin gene expression using cDNA microarrays. Wound Repair Regen 9: 77–85

    Article  CAS  PubMed  Google Scholar 

  16. Constant JS, Feng JJ, Zabel DD et al. (2000) Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. Wound Repair Regen 8: 353–360

    Article  CAS  PubMed  Google Scholar 

  17. Crystal RG (1995) Transfer of genes to humans: early lessons and obstacles to success. Science 270: 404–410

    Article  CAS  PubMed  Google Scholar 

  18. Dazert S, Muller AM (2002) Stem cell biotechnology – revolution in established therapeutic methods? Laryngorhinootologie [Suppl 1] 81: 24–38

  19. Dean PG, Lund WJ, Larson TS et al. (2004) Wound-healing complications after kidney transplantation: a prospective, randomized comparison of sirolimus and tacrolimus. Transplantation 77: 1555–1561

    Article  CAS  PubMed  Google Scholar 

  20. Denham JW, Hauer-Jensen M (2002) The radiotherapeutic injury–a complex ‚wound’. Radiother Oncol 63: 129–145

    Article  PubMed  Google Scholar 

  21. Deutsche Forschungsgemeinschaft, Entwicklung der Gentherapie / Development of Gene Therapy; Stellungnahme der Senatskommission für Grundsatzfragen der Genforschung, Mitteilung 5 / Report 5, Wiley-VCH, Weinheim, 2007

  22. Dill-Müller D, Tilgen W (2005) Bewährte und aktuelle Verfahren in der Wundheilung. Hautarzt 56: 411–422

    Article  PubMed  Google Scholar 

  23. Dissemond J, Goos M, Wagner SN (2002) The role of oxidative stress in the pathogenesis and therapy of chronic wounds. Hautarzt 53: 718–723

    Article  CAS  PubMed  Google Scholar 

  24. Dissemond J, Weimann TK, Schneider LA et al. (2003) Activated neutrophils exert antitumor activity against human melanoma cells: reactive oxygen species-induced mechanisms and their modulation by GM-CSF. J Invest Dermatol 121: 936–938

    Article  CAS  PubMed  Google Scholar 

  25. Drake DB, Oishi SN (1995) Wound healing considerations in chemotherapy and radiation therapy. Clin Plast Surg 22: 31–37

    CAS  PubMed  Google Scholar 

  26. Eming SA, Kaufmann J, Löhrer R, Krieg T (2007) Chronic wounds. Novel approaches in research and therap. Hautarzt 58: 939–944

    Article  CAS  PubMed  Google Scholar 

  27. Eming SA, Krieg T, Davidson JM (2004) Gene transfer in tissue repair: status, challenges and future directions. Expert Opin Biol Ther 4: 1373–1386

    Article  CAS  PubMed  Google Scholar 

  28. Eming SA, Krieg T, Davidson JM (2007) Gene therapy and wound healing. Clin Dermatol 25: 79–92

    Article  PubMed  Google Scholar 

  29. Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127: 514–525

    Article  CAS  PubMed  Google Scholar 

  30. Eming SA, Smola H, Krieg T (2002) Treatment of chronic wounds: state of the art and future concepts. Cells Tissues Organs 172: 105–117

    Article  CAS  PubMed  Google Scholar 

  31. Eming SA, Whitsitt JS, He L et al. (1999) Particle-mediated gene transfer of PDGF isoforms promotes wound repair. J Invest Dermatol 112: 297–302

    Article  CAS  PubMed  Google Scholar 

  32. Eriksson E, Yao F, Svensjo T et al. (1998) In vivo gene transfer to skin and wound by microseeding. J Surg Res 78: 85–91

    Article  CAS  PubMed  Google Scholar 

  33. Flechner SM, Zhou L, Derweesh I et al. (2003) The impact of sirolimus, mycophenolate mofetil, cyclosporine, azathioprine, and steroids on wound healing in 513 kidney-transplant recipients. Transplantation 76: 1729–1734

    Article  CAS  PubMed  Google Scholar 

  34. Franzeck UK, Haselbach P, Speiser D, Bollinger A (1993) Microangiopathy of cutaneous blood and lymphatic capillaries in chronic venous insufficiency (CVI). Yale J Biol Med 66: 37–46

    CAS  PubMed  Google Scholar 

  35. Gillitzer R (2002) Modernes Wundmanagement. Hautarzt 53: 130–147

    Article  CAS  PubMed  Google Scholar 

  36. Gillitzer R, Goebeler M (2001) Chemokines in cutaneous wound healing. J Leukoc Biol 69: 513–521

    CAS  PubMed  Google Scholar 

  37. Giunta RE, Holzbach T, Taskov C et al. (2005) AdVEGF165 gene transfer increases survival in overdimensioned skin flaps. J Gene Med 7: 297–306

    Article  CAS  PubMed  Google Scholar 

  38. Goessler UR, Hörmann K, Riedel F (2005) Adult stem cells in plastic reconstructive surgery. Int J Mol Med 15: 899–905

    CAS  PubMed  Google Scholar 

  39. Goessler UR, Riedel K, Hormann K, Riedel F (2006) Perspectives of gene therapy in stem cell tissue engineering. Cells Tissues Organs 183: 169–179

    Article  PubMed  Google Scholar 

  40. Gojo S, Yamamoto S, Patience C et al. (2002) Gene therapy – its potential in surgery. Ann R Coll Surg Engl 84: 297–301

    Article  PubMed  Google Scholar 

  41. Goldminz D, Bennett RG (1991) Cigarette smoking and flap and full-thickness graft necrosis. Arch Dermatol 127: 1012–1015

    Article  CAS  PubMed  Google Scholar 

  42. Guntinas-Lichius O (2002) Growth factors in otorhinolaryngology. Laryngorhinootologie [Suppl 1] 81: 39–60

    Google Scholar 

  43. Hardaway RM (2000) A review of septic shock. Am Surg 66: 22–29

    CAS  PubMed  Google Scholar 

  44. He Z, King GL (2004) Microvascular complications of diabetes. Endocrinol Metab Clin North Am 33: 215–238

    Article  CAS  PubMed  Google Scholar 

  45. Heldin C-H, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79: 1283–1316

    CAS  PubMed  Google Scholar 

  46. Herrick S, Ashcroft G, Ireland G et al. (1997) Up-regulation of elastase in acute wounds of healthy aged humans and chronic venous leg ulcers are associated with matrix degradation. Lab Invest 77: 281–288

    CAS  PubMed  Google Scholar 

  47. Herskind C, Bamberg M, Rodemann HP (1998) The role of cytokines in the development of normal-tissue reactions after radiotherapy. Strahlenther Onkol [Suppl 3] 174: 12–15

    Google Scholar 

  48. Hom DB, Thatcher G, Tibesar R (2002) Growth factor therapy to improve soft tissue healing. Facial Plast Surg 18: 41–52

    Article  PubMed  Google Scholar 

  49. Horwitz LD, Kaufman D, Kong Y (1997) An antibody to leukocyte integrins attenuates coronary vascular injury due to ischemia and reperfusion in dogs. Am J Physiol 272: H618–H624

    CAS  PubMed  Google Scholar 

  50. Jannasch O, Tautenhahn J, Dalicho S, Lippert H (2007) The difficult wound. Ther Umsch 64: 485–494

    Article  CAS  PubMed  Google Scholar 

  51. Jensen JA, Goodson WH, Hopf HW, Hunt TK (1991) Cigarette smoking decreases tissue oxygen. Arch Surg 126: 1131–1134

    CAS  PubMed  Google Scholar 

  52. Körbling M, Estrov Z (2003) Adult stem cells for tissue repair – a new therapeutic concept? N Engl J Med 349: 570–582

    Article  PubMed  Google Scholar 

  53. Lawrence WT, Diegelmann RF (1994) Growth factors in wound healing. Clin Dermatol 12: 157–169

    Article  CAS  PubMed  Google Scholar 

  54. Machens HG, Mailander P (2005) Regenerative medicine and plastic surgery. Chirurg 76: 474–480

    Article  PubMed  Google Scholar 

  55. Machens HG, Morgan JR, Sachse C et al. (2000) Gene therapy possibilities in plastic surgery. Chirurg 71: 152–158

    CAS  PubMed  Google Scholar 

  56. Madry H, Kohn D, Cucchiarini M (2006) Gene therapy in orthopaedic surgery. Orthopade 35: 1193–1204

    Article  CAS  PubMed  Google Scholar 

  57. Maruyama K, Asai J, Ii M et al. (2007) Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol 170: 1178–1191

    Article  PubMed  Google Scholar 

  58. Mast BA, Schultz GS (1996) Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen 4: 411–420

    Article  CAS  PubMed  Google Scholar 

  59. Medina A, Scott PG, Ghahary A, Tredget EE (2005) Pathophysiology of chronic nonhealing wounds. J Burn Care Rehabil 26: 306–319

    Article  PubMed  Google Scholar 

  60. Müller K, Meineke V (2007) Radiation-induced alterations in cytokine production by skin cells. Exp Hematol [Suppl 1] 35: 96–104

  61. Mustoe TA, Han H (1999) The effect of new technologies on plastic surgery. Arch Surg 134: 1178–1183

    Article  CAS  PubMed  Google Scholar 

  62. Mustoe TA, O’Shaughnessy K, Kloeters O (2006) Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plast Reconstr Surg 117: 35–41

    Article  CAS  Google Scholar 

  63. Oberholzer A, Stahel P, Tschoke SK, Ertel W (2006) Role of gene therapy in trauma and orthopedic surgery. Unfallchirurg 109: 521–527

    Article  CAS  PubMed  Google Scholar 

  64. Papanas N, Maltezos E (2007) Growth factors in the treatment of diabetic foot ulcers: new technologies, any promises? Int J Low Extrem Wounds 6: 37–53

    Article  CAS  PubMed  Google Scholar 

  65. Petratos PB, Felsen D, Trierweiler G et al. (2002) TGF-beta-2 reverses the inhibitory effects of fibrin sealant on cutaneous wound repair in the pig. Wound Repair Regen 10: 252–258

    Article  PubMed  Google Scholar 

  66. Philipp K, Riedel F, Sauerbier M et al. (2004) Targeting TGF-beta in human keratinocytes and its potential role in wound healing. Int J Mol Med 14: 589–593

    CAS  PubMed  Google Scholar 

  67. Pittenger MF, Mackay AM, Beck SC et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147

    Article  CAS  PubMed  Google Scholar 

  68. Rico RM, Ripamonti R, Burns AL et al. (2002) The effect of sepsis on wound healing. J Surg Res 102: 193–197

    Article  PubMed  Google Scholar 

  69. Riedel F, Goessler UR, Stern-Straeter J et al. (2008) Regenerative medicine in head and neck reconstructive surgery. HNO 56: 262–274

    Article  CAS  PubMed  Google Scholar 

  70. Riedel K, Riedel F, Goessler U et al. (2006) Current status of genetic modulation of growth factors in wound healing. Int J Mol Med 17: 183–193

    PubMed  Google Scholar 

  71. Riou JP, Cohen JR, Johnson H Jr (1992) Factors influencing wound dehiscence. Am J Surg 163: 324–330

    Article  CAS  PubMed  Google Scholar 

  72. Robson MC (1997) Wound infection. A failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am 77: 637–650

    Article  CAS  PubMed  Google Scholar 

  73. Robson MC, Cooper DM, Aslam R et al. (2006) Guidelines for the treatment of venous ulcers. Wound Repair Regen 14: 649–662

    Article  PubMed  Google Scholar 

  74. Rudolph R, Arganese T, Woodward M (1982) The ultrastructure and etiology of chronic radiotherapy damage in human skin. Ann Plast Surg 9: 282–292

    Article  CAS  PubMed  Google Scholar 

  75. Salim AS (1991) The role of oxygen-derived free radicals in the management of venous (varicose) ulceration: a new approach. World J Surg 15: 264–269

    Article  CAS  PubMed  Google Scholar 

  76. Schäffer M, Becker HD (1999) Immune regulation of wound healing. Chirurg 70: 897–908

    Article  PubMed  Google Scholar 

  77. Schilling JA (1976) Wound healing. Surg Clin North Am 56: 859–874

    CAS  PubMed  Google Scholar 

  78. Silverstein P (1992) Smoking and wound healing. Am J Med 93: 22–24

    Article  Google Scholar 

  79. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341: 738–746

    Article  CAS  PubMed  Google Scholar 

  80. Smith JB, Fenske NA (1996) Cutaneous manifestations and consequences of smoking. J Am Acad Dermatol 34: 717–734

    Article  CAS  PubMed  Google Scholar 

  81. Smith PD (1999) Neutrophil activation and mediators of inflammation in chronic venous insufficiency. J Vasc Res [Suppl 1] 36: 24–36

    Google Scholar 

  82. Smola H, Eming SA, Hess S et al. (2001) Wundheilung und Wundheilungsstörungen. Dtsch Arztebl 98: 2400–2406

    Google Scholar 

  83. Steed DL (1995) Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. J Vasc Surg 21: 71

    Article  CAS  PubMed  Google Scholar 

  84. Steed DL (2004) Debridement. Am J Surg 187(5A): 71–74

    Article  Google Scholar 

  85. Tanczos E, Horch RE, Bannasch H et al. (1999) Keratinocyte transplantation and tissue engineering. New approaches in treatment of chronic wounds. Zentralbl Chir [Suppl 1] 124: 81–86

  86. Taub PJ, Marmur JD, Zhang WX et al. (1998) Locally administered vascular endothelial growth factor cDNA increases survival of ischemic experimental skin flaps. Plast Reconstr Surg 102: 2033

    Article  CAS  PubMed  Google Scholar 

  87. Taub PJ, Silver L, Weinberg H (2000) Plastic surgical perspectives on vascular endothelial growth factor as gene therapy for angiogenesis. Plast Reconstr Surg 105: 1034–1042

    Article  CAS  PubMed  Google Scholar 

  88. Tepper OM, Mehrara BJ (2002) Gene therapy in plastic surgery. Plast Reconstr Surg 109: 716–734

    Article  PubMed  Google Scholar 

  89. Tonnesen MG, Feng X, Clark RAF (2000) Angiogenesis in wound healing. J Invest Dermatol 5: 40–46

    Article  CAS  Google Scholar 

  90. Tsou R, Cole JK, Nathens AB et al. (2000) Analysis of hypertrophic scar and normal scar gene expression with cDNA microarrays. J Burn Care Rehabil 21: 541–550

    Article  CAS  PubMed  Google Scholar 

  91. Van de Kerkhof PC, Van Bergen B, Spruijt K, Kuiper JP (1994) Age-related changes in wound healing. Clin Exp Dermatol 19: 369–374

    Article  Google Scholar 

  92. Waller W, Lee J, Zhang F, Lineaweaver WC (2004) Gene therapy in flap survival. Microsurgery 24: 168–173

    Article  PubMed  Google Scholar 

  93. Witte MB, Barbul A (1997) General principles of wound healing. Surg Clin North Am 77: 509–528

    Article  CAS  PubMed  Google Scholar 

  94. Yager DR, Nwomeh BC (1999) The proteolytic environment of chronic wounds. Wound Repair Regen 7: 433–441

    Article  CAS  PubMed  Google Scholar 

  95. Yanase A, Ueda M, Kaneda T et al. (1993) Irradiation effects on wound contraction using a connective tissue model. Ann Plast Surg 30: 435–440

    Article  CAS  PubMed  Google Scholar 

  96. Yao F, Eriksson E (2000) Gene therapy in wound repair and regeneration. Wound Repair Regen 8: 443–451

    Article  CAS  PubMed  Google Scholar 

  97. Zhang F, Oswald T, Lin S et al. (2003) Vascular endothelial growth factor (VEGF) expression and the effect of exogenous VEGF on survival of a random flap in the rat. Br J Plast Surg 56: 653–659

    Article  CAS  PubMed  Google Scholar 

  98. Zuk PA, Zhu M, Mizuno H et al. (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7: 211–228

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Keine Angaben.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Riedel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedel, K., Ryssel, H., Koellensperger, E. et al. Pathophysiologie der chronischen Wunde. Chirurg 79, 526–534 (2008). https://doi.org/10.1007/s00104-008-1501-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-008-1501-2

Schlüsselwörter

Keywords

Navigation