Skip to main content
Log in

Klinische Behandlung von Gelenkknorpelschäden mithilfe autologer Vorläuferzellen

Use of human progenitor cells in the treatment of cartilage damage

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Gelenkknorpelschäden haben praktisch keine Selbstheilungstendenz. Dies macht bei symptomatischen Grad-III/IV-Schäden (gemäß ICRS-Klassifikation) eine operative Therapie erforderlich. Die Anwendung knochenmarkstimulierender Techniken (Pridie-Bohrung, Mikrofrakturierung) lässt bisher nur einen mechanisch minderwertigen Faserknorpel entstehen. Eine minimal-invasive OP-Technik und ein geringer Kostenaufwand bleiben bei mittelfristig akzeptablen Ergebnissen die wichtigsten Gründe für ihre Anwendung. Für die Kombination von Mikrofrakturierung mit Biomaterialien (AMIC-Technik) konnte bisher nicht abschließend gezeigt werden, dass die Nachteile der knochenmarkstimulierenden Verfahren durch den Einsatz des Biomaterials überwunden werden können. Zur biomechanisch hochwertigen Rekonstruktion der Knorpelschicht stehen gegenwärtig nur kultivierte autologe Chondrozyten aus dem Labor zur Verfügung. Durch Selektion der geeigneten Zellfraktion und kontrollierte Gabe differenzierender Wachstumsfaktoren scheint eine verbesserte Knorpelregeneration auf Grundlage von Knochenmarkblut möglich zu sein. Dies ist Gegenstand experimenteller Studien mit Knochenmarksaspiraten und autologen Wachstumsfaktoren mit ersten ermunternden Ergebnissen.

Abstract

Articular cartilage defects have virtually no self-healing capacity. As a consequence, a surgical approach for symptomatic grade III/IV defects is required. The application of bone marrow-stimulating techniques (Pridie drilling, microfracture) is only able to reproduce mechanically inferior fibrous cartilage tissue. The minimally invasive surgical technique and low cost with acceptable results in the medium term are the main reasons for the application of these techniques. The combination of microfracture and biomaterials, i.e., the AMIC technique, has not yet proved that the disadvantages of the marrow stimulation techniques can be overcome. At present, only laboratory cultivated autologous chondrocytes are able to restore a biomechanically superior cartilage layer. By selecting the appropriate cell fraction in conjunction with the controlled release of differentiating growth factors, sufficient cartilage regeneration also appears to be achievable on the basis of bone marrow aspirate. This is the subject of experimental studies of bone marrow aspirates and autologous growth factors with encouraging initial results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Caplan AL (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  PubMed  CAS  Google Scholar 

  2. Bohndorf K (1996) Injuries at the articulating surfaces of bone, chondral, osteochondral, subchondral fractures and osteochondrosis dissecans. Eur J Radiol 22:22–29

    Article  PubMed  CAS  Google Scholar 

  3. Fuller JA, Ghadially FN (1972) Ultrastructural observations on surgically produced partial-thickness defects in articular cartilage. Clin Orthop 86:193–205

    Article  PubMed  CAS  Google Scholar 

  4. Mankin HJ (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg 64A:460–466

    Google Scholar 

  5. Grande DA, Pitman MI, Peterson L et al (1989) The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 7(2):208–218

    Article  PubMed  CAS  Google Scholar 

  6. Shapiro F, Koide S, Glimcher MJ (1993) Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg (A) 75(4):532–553

    Google Scholar 

  7. Wakitani S, Goto T, Pineda SJ et al (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg (A) 76(4):579–592

    Google Scholar 

  8. IKDC-Score (1999) International Cartilage Repair Society. ICRS-Newsletter 1999

  9. Behrens P, Bruns J, Erggelet CH et al (2004) Recommendations for indication and application of ACT of the joined advisory board of the German Societies for Traumatology (DGU) and Orthopaedic Surgery (DGOOC). Z Orthop Ihre Grenzgeb 142:529–539

    Article  PubMed  CAS  Google Scholar 

  10. Brittberg M, Lindahl A, Nilsson A et al (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  PubMed  CAS  Google Scholar 

  11. Steadman JR, Briggs KK, Rodrigo JJ et al (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19(5):477–484

    Article  PubMed  Google Scholar 

  12. Mow VC, Proctor CS, Kelly MA (1989) Biomechanics of articular cartilage. In: Nordin M, Frankel VH (Hrsg) Basic biomechanics of the musculo-skeletal system, 2. Aufl. Lea & Febinger, Philadelphia, PA, S 31–57

  13. Wong M, Wuetherich P, Buschmann M et al (1997) Chondrocyte biosynthesis correlates with local tissue strain in statically compressed adult articular cartilage. J Orthop Res 15:189–196

    Article  PubMed  CAS  Google Scholar 

  14. Recht MP, Resnick D (1998) Magnetic resonance imaging of articular cartilage: an overview. Top Magn Reson Imaging 9(6):328–336

    Article  PubMed  CAS  Google Scholar 

  15. Pridie KH (1959) A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg Br 41:618–619

    Google Scholar 

  16. Tippet JW (1996) Articular cartilage drilling and osteotomy in osteoarthritis of the knee. In: McGinty JB, Caspari RB, Jackson RW, Poehling GG (Hrsg) Operative arthroscopy, 2. Aufl. Raven Press, Philadelphia New York, S 411–426

  17. Knutsen G, Engebretsen L, Ludvigsen TC et al (2004) Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg 86-A(3):455–464

    Google Scholar 

  18. Kreuz PC, Erggelet C, Steinwachs MR et al (2006) Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy 22(11):1180–1186

    Article  PubMed  Google Scholar 

  19. Mithoefer K, Williams RJ, Warren RF et al (2005) The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 87(9):1911–1920

    Article  PubMed  Google Scholar 

  20. Steinwachs MR, Kreuz PC, Krause S, Lahm A (2003) Klinische Ergebnisse nach Mikrofrakturierung bei der Behandlung von Gelenkknorpeldefekten. Sportortho Sporttrauma 19:291–294

    Google Scholar 

  21. Steinwachs MR, Guggi T, Kreuz PC (2008) Marrow stimulation technique. Injury 39(Suppl 1):26–31

    Article  Google Scholar 

  22. Kreuz PC, Steinwachs MR, Erggelet C et al (2006) Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage 14(11):1119–1125

    Article  PubMed  CAS  Google Scholar 

  23. Saris D, Vanlauwe J, Victor J et al (2008) Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 36:235–246

    Article  PubMed  Google Scholar 

  24. Saris DB, Vanlauwe J, Victor J et al (2009) Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med 37(Suppl 1):10S–19S

    Article  PubMed  Google Scholar 

  25. Mithoefer K, McAdams T, Williams RJ et al (2009) Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med 37(10):2053–2063

    Article  PubMed  Google Scholar 

  26. Rodrigo JJ, Steadman JR, Silliman JF, Fulstone HA (1994) Improvement in fullthickness chondral defect healing in the human knee after debridement and microfracture using continuous passive motion. Am J Knee Surg 7:109–116

    Google Scholar 

  27. Steadman JR, Rodkey WG, Briggs KK (2002) Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation and outcomes. J Knee Surg 15(3):170–176

    PubMed  Google Scholar 

  28. Steinwachs MR, Erggelet C, Lahm A, Guhlke-Steinwachs U (1999) Clinical and cell biology aspects of autologous chondrocytes transplantation. Unfallchirurg 102(11):855–860

    Article  PubMed  CAS  Google Scholar 

  29. Becher C, Thermann H (2005) Results of microfracture in the treatment of articular cartilage defects of the talus. Foot Ankle Int 26(8):583–589

    PubMed  Google Scholar 

  30. Crawford K, Philippon MJ, Sekiya JK et al (2006) Microfracture of the hip in athletes. Clin Sports Med 25(2):327–333

    Article  PubMed  Google Scholar 

  31. Siebold R, Lichtenberg S, Habermeyer P (2003) Combination of microfracture and periostal-flap for the treatment of focal full thickness articular cartilage lesions of the shoulder: a prospective study. Knee Surg Sports Traumatol Arthrosc 1(3):183–189

    Google Scholar 

  32. Behrens P (2005). Matrixgekoppelte Mikrofrakturierung. Arthroskopie 18:193–197

    Article  Google Scholar 

  33. Dorotka R, Bindreiter U, Macfelda K et al (2005) Marrow stimulation and chondrocyte transplantation using a collagen matrix for cartilage repair. Osteoarthritis Cartilage 13(8):655–664

    Article  PubMed  CAS  Google Scholar 

  34. De Girolamo L, Bertolini G, Cervellin et al (2010) Treatment of chondral defects of the knee with one step matrix-assisted technique enhanced by autologous concentrated bone marrow: in vitro characterisation of mesenchymal stem cells from iliac crest and subchondral bone. Injury 41(11):1172–1177

    Article  Google Scholar 

  35. Fortier LA, Potter HG, Rickey EJ et al (2010) Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am 92(10):1927–1937

    Article  PubMed  Google Scholar 

  36. Saw KY, Hussin P, Loke SC et al (2009) Articular cartilage regeneration with autologous marrow aspirate and hyaluronic Acid: an experimental study in a goat model. Arthroscopy 25(12):1391–1400

    Article  PubMed  Google Scholar 

  37. Kuo AC, Rodrigo JJ, Reddi AH et al (2006) Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair. Osteoarthritis Cartilage 14(11):1126

    Article  PubMed  CAS  Google Scholar 

  38. Filardo G, Kon E, Buda R et al (2011) Platelet-rich plasma intra-articular knee injections for the treatment of degenerative cartilage lesions and osteoarthritis. Knee Surg Sports Traumatol Arthrosc 19(4):528–535

    Article  PubMed  Google Scholar 

  39. Kon E, Filardo G, Delcogliano M et al (2010) Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model. BMC Musculoskelet Disord 11:220

    Article  PubMed  Google Scholar 

  40. Milano G, Sanna Passino E, Deriu L et al (2010) The effect of platelet rich plasma combined with microfractures on the treatment of chondral defects: an experimental study in a sheep model. Osteoarthritis Cartilage 18(7):971–980

    Article  PubMed  CAS  Google Scholar 

  41. Qi YY, Chen X, Jiang YZ et al (2009) Local delivery of autologous platelet in collagen matrix simulated in situ articular cartilage repair. Cell Transplant 18(10):1161–1169

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.R. Steinwachs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinwachs, M., Waibl, B. & Niemeyer, P. Klinische Behandlung von Gelenkknorpelschäden mithilfe autologer Vorläuferzellen. Bundesgesundheitsbl. 54, 797–802 (2011). https://doi.org/10.1007/s00103-011-1302-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-011-1302-5

Schlüsselwörter

Keywords

Navigation