Skip to main content
Log in

Nahinfrarotspektroskopie in der Sepsistherapie

Prädiktor für eine erniedrigte zentralvenöse Sauerstoffsättigung

Near-infrared spectroscopy in sepsis therapy

Predictor of a low central venous oxygen saturation

  • Originalien
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Ein wichtiger Baustein in der Sepsistherapie ist die frühzeitige und zielgerichtete hämodynamische Optimierung. Eine der definierten Zielgrößen in diesem Zusammenhang ist die zentralvenöse Sauerstoffsättigung (SO2). Das Ziel dieser Sekundäranalyse ist die Untersuchung des Zusammenhangs zwischen der zentralvenösen SO2 und einer frontalzerebralen Nahinfrarotspektroskopie (NIRS) bei Patienten mit schwerer Sepsis oder septischem Schock.

Material und Methoden

Es wurde eine prospektive Untersuchung von 16 operativen Intensivpatienten (medianes Alter 65 Jahre) in der frühen Phase einer schweren Sepsis oder eines septischen Schocks durchgeführt. Erhoben wurden bilateral über dem Frontalhirn gemessene NIRS-Werte (rSO2), die zentralvenöse SO2 und weitere Surrogatparameter des Sauerstofftransports und -stoffwechsels (Hämoglobin, arterieller Sauerstoffpartialdruck, Sauerstoffgehalt).

Ergebnisse

Die minimale rSO2 und die rechts frontal gemessene rSO2 korrelierten in der Analyse der erfassten Daten mithilfe der „receiver operating characteristics“ mit der zentralvenösen SO2 („area under the curve“= 0,844; p= 0,045). Eine zentralvenöse SO2 < 70% wird durch eine rSO2 < 56,5% mit einer Sensitivität von 75% und Spezifität 100% angezeigt.

Schlussfolgerung

Die zerebrale NIRS könnte ein schnelles, einfaches und nebenwirkungsfreies Verfahren darstellen, das in der frühen Sepsis in Kombination mit anderen etablierten Monitoringverfahren frühzeitig zur Therapiesteuerung genutzt werden kann.

Abstract

Background

Early goal-directed hemodynamic optimization has become a cornerstone of sepsis therapy. One major defined goal is to achieve adequate central venous oxygen saturation (SO2). This study aimed to investigate the correlation between central venous SO2 and frontal cerebral near-infrared spectroscopy (NIRS) measurement in patients with severe sepsis and septic shock. The NIRS method provides non-invasive measurement of regional oxygen saturation (rSO2) in tissues approximately 2 cm below the optical NIRS sensors which depends on arterial, capillary and venous blood. Thus this system gives site-specific real-time data about the balance of oxygen supply and demand.

Methods

This was a secondary analysis from a prospective study of surgical intensive care (ICU) patients in the early phase of severe sepsis or septic shock. Bilateral cerebral rSO2, central venous SO2, arterial oxygen saturation (SaO2) and other surrogate parameters of oxygen supply, such as hemoglobin, partial pressure of oxygen and oxygen content in arterial blood were recorded.

Results

A total of 16 ICU patients (4 women, median age 65.5 years) were included in the study. As sepsis focus an intra-abdominal infection was detected in 62.5 % of patients, severe pneumonia was determined in 31.3 % and skin and soft tissue infections were recognized in 12.5 %. At study inclusion 50 % of patients had septic shock, the median sequential organ failure assessment (SOFA) score was 10.2 (interquartile range 5.25–8.75) and the median acute physiology and chronic health evaluation II (APACHE II) score was 26 (range 23.25–29.75). Mortality at day 28 was 37.5 %. Minimum rSO2 (median 58) and right-sided rSO2 (median 58) values showed a significant correlation in the analysis of receiver operating characteristics (area under the curve 0.844, p= 0.045). A central venous SO2< 70 % was indicated by rSO2< 56.5 with sensitivity and specificity of 75 % and 100 %, respectively.

Conclusions

Cerebral NIRS could provide a fast and easily available side effect-free monitoring that could be used in addition to established procedures for goal-directed treatment in the early phase of sepsis. Further studies should be made in a larger population to verify the correlation found and to investigate the impact of NIRS-directed resuscitation treatment in early sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Angus DC, Wax RS (2001) Epidemiology of sepsis: an update. Crit Care Med 29:S109–S116

    Article  PubMed  CAS  Google Scholar 

  2. Baulig W, Dullenkopf A, Hasenclever P et al (2008) In vitro evaluation of the CeVOX continuous central venous oxygenation monitoring system. Anaesthesia 63:412–417

    Article  PubMed  CAS  Google Scholar 

  3. Bone RC, Sibbald WJ, Sprung CL (1992) The ACCP-SCCM consensus conference on sepsis and organ failure. Chest 101:1481–1483

    Article  PubMed  CAS  Google Scholar 

  4. Booth EA, Dukatz C, Ausman J et al (2010) Cerebral and somatic venous oximetry in adults and infants. Surg Neurol Int 1:75

    Article  PubMed  Google Scholar 

  5. Brun-Buisson C, Doyon F, Carlet J et al (1995) Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. JAMA 274:968–974

    Article  PubMed  CAS  Google Scholar 

  6. Casati A, Fanelli G, Pietropaoli P et al (2005) Continuous monitoring of cerebral oxygen saturation in elderly patients undergoing major abdominal surgery minimizes brain exposure to potential hypoxia. Anesth Analg 101:740–747

    Article  PubMed  Google Scholar 

  7. Colin G, Nardi O, Polito A et al (2012) Masseter tissue oxygen saturation predicts normal central venous oxygen saturation during early goal-directed therapy and predicts mortality in patients with severe sepsis. Crit Care Med 40:435–440

    Article  PubMed  CAS  Google Scholar 

  8. Colquhoun DA, Tucker-Schwartz JM, Durieux ME et al (2012) Non-invasive estimation of jugular venous oxygen saturation: a comparison between near infrared spectroscopy and transcutaneous venous oximetry. J Clin Monit Comput 26:91–98

    Article  PubMed  Google Scholar 

  9. Dullenkopf A, Frey B, Baenziger O et al (2003) Measurement of cerebral oxygenation state in anaesthetized children using the INVOS5100 cerebral oximeter. Paediatr Anaesth 13:384–391

    Article  PubMed  Google Scholar 

  10. Friedman G, Silva E, Vincent JL (1998) Has the mortality of septic shock changed with time? Crit Care Med 26:2078–2086

    Article  PubMed  CAS  Google Scholar 

  11. Ginther R, Sebastian VA, Huang R et al (2011) Cerebral near-infrared spectroscopy during cardiopulmonary bypass predicts superior vena cava oxygen saturation. J Thorac Cardiovasc Surg 142:359–365

    Article  PubMed  Google Scholar 

  12. Goldman S, Sutter F, Ferdinand F et al (2004) Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients. Heart Surg Forum 7:E376–E381

    Article  PubMed  Google Scholar 

  13. Goodrich C (2006) Continuous central venous oximetry monitoring. Crit Care Nurs Clin North Am 18:203–209

    Article  PubMed  Google Scholar 

  14. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    PubMed  CAS  Google Scholar 

  15. Henrich M, Gruß M, Weigand MA (2012) Hämodynamische Veränderungen in der Sepsis. Anaesth Intensivmed 53:19–32

    Google Scholar 

  16. Heringlake M, Garbers C, Kabler JH et al (2011) Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology 114:58–69

    Article  PubMed  Google Scholar 

  17. Hicks P, Cooper DJ (2008) The Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Resusc 10:8

    PubMed  Google Scholar 

  18. Janelle GM, Mnookin S, Gravenstein N et al (2002) Unilateral cerebral oxygen desaturation during emergent repair of a DeBakey type 1 aortic dissection: potential aversion of a major catastrophe. Anesthesiology 96:1263–1265

    Article  PubMed  Google Scholar 

  19. Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  PubMed  CAS  Google Scholar 

  20. Maddirala S, Khan A (2010) Optimizing hemodynamic support in septic shock using central and mixed venous oxygen saturation. Crit Care Clin 26:323–333

    Article  PubMed  Google Scholar 

  21. Marimon GA, Dockery WK, Sheridan MJ et al (2012) Near-infrared spectroscopy cerebral and somatic (renal) oxygen saturation correlation to continuous venous oxygen saturation via intravenous oximetry catheter. J Crit Care 27:314 e313–e318

    Article  PubMed  Google Scholar 

  22. Mesquida J, Masip J, Gili G et al (2009) Thenar oxygen saturation measured by near infrared spectroscopy as a noninvasive predictor of low central venous oxygen saturation in septic patients. Intensive Care Med 35:1106–1109

    Article  PubMed  Google Scholar 

  23. Müller T (2003) Monitoring of the central venous and mixed venous oxygen concentration in intensive care medicine: physiological and technical bases, indications and claims. Intensivmed Notfallmed 40:711–719

    Article  Google Scholar 

  24. Murkin JM (2009) NIRS: a standard of care for CPB vs. an evolving standard for selective cerebral perfusion? J Extra Corpor Technol 41:P11–P14

    PubMed  Google Scholar 

  25. Murkin JM, Adams SJ, Novick RJ et al (2007) Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg 104:51–58

    Article  PubMed  Google Scholar 

  26. Nguyen HB, Rivers EP, Knoblich BP et al (2004) Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 32:1637–1642

    Article  PubMed  Google Scholar 

  27. Paarmann H, Heringlake M, Heinze H et al (2012) Non-invasive cerebral oxygenation reflects mixed venous oxygen saturation during the varying haemodynamic conditions in patients undergoing transapical transcatheter aortic valve implantation. Interact Cardiovasc Thorac Surg 14:268–272

    Article  PubMed  Google Scholar 

  28. Pennekamp CW, Bots ML, Kappelle LJ et al (2009) The value of near-infrared spectroscopy measured cerebral oximetry during carotid endarterectomy in perioperative stroke prevention. A review. Eur J Vasc Endovasc Surg 38:539–545

    Article  PubMed  CAS  Google Scholar 

  29. Reinhart K, Brunkhorst FM, Bone HG et al (2010) Prävention, Diagnose, Therapie und Nachsorge der Sepsis. Erste Revision der S2k-Leitlinien der Deutschen Sepsis-Gesellschaft e.V. (DSG) und der Deutschen Interdisziplinären Vereinigung fur Intensiv- und Notfallmedizin (DIVI). Anaesthesist 59:347–370

    Article  PubMed  CAS  Google Scholar 

  30. Ricci Z, Garisto C, Favia I et al (2010) Cerebral NIRS as a marker of superior vena cava oxygen saturation in neonates with congenital heart disease. Paediatr Anaesth 20:1040–1045

    Article  PubMed  Google Scholar 

  31. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  32. Schon J, Heringlake M, Berger K et al (2011) Relationship between mixed venous oxygen saturation and regional cerebral oxygenation in awake, spontaneously breathing cardiac surgery patients. Minerva Anestesiol 77:952–958

    PubMed  CAS  Google Scholar 

  33. Shepherd SJ, Pearse RM (2009) Role of central and mixed venous oxygen saturation measurement in perioperative care. Anesthesiology 111:649–656

    Article  PubMed  Google Scholar 

  34. Slater JP, Guarino T, Stack J et al (2009) Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann Thorac Surg 87:36–44

    Article  PubMed  Google Scholar 

  35. Weigand MA, Bardenheuer HJ, Bottiger BW (2003) Klinisches Management bei Patienten mit Sepsis. Anaesthesist 52:3–22

    Article  PubMed  CAS  Google Scholar 

  36. Wolf M, Ferrari M, Quaresima V (2007) Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J Biomed Opt 12:062104

    Article  PubMed  Google Scholar 

  37. Zanatta P, Forti A (2011) Effectiveness of NIRS to sample the frontal brain cortex in all cardiac surgery patients. Minerva Anestesiol 77:1124–1125

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist für sich und seine Koautoren auf folgende Beziehung hin: M.A. Weigand nahm an einem Advisory Board der Fa. Covidien Deutschland GmbH teil. Die übrigen Autoren geben an, dass keine Interessenkonflikte bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lichtenstern.

Additional information

C. Lichtenstern und C. Koch haben gleichermaßen an der Erstellung dieser Arbeit beigetragen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lichtenstern, C., Koch, C., Röhrig, R. et al. Nahinfrarotspektroskopie in der Sepsistherapie. Anaesthesist 61, 883–891 (2012). https://doi.org/10.1007/s00101-012-2087-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-012-2087-0

Schlüsselwörter

Keywords

Navigation