Skip to main content
Log in

Vom Finanz- zum Wissenschaftsbetrug

Methode, den Irrungen in der medizinischen Literatur beizukommen

From financial to scientific fraud

Methods to detect discrepancies in the medical literature

  • Trends und Medizinökonomie
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Betrug ist so alt wie die Menschheit. So gibt es unzählige historische Dokumente, die belegen, wie bereits in der Vergangenheit mit Wahrheit und Unwahrheit umgegangen worden ist. Daher ist es eigentlich nicht verwunderlich, dass sich diesbezügliche Beispiele nun häufen. Umso unverständlicher ist allerdings, dass das Bekanntwerden von neuen Verdachtsfällen gerade in der Medizin ein so großes Erstaunen hervorruft. Im Finanzbereich wird seit über 10 Jahren ein statistisches Instrument zur Aufdeckung von Wirtschaftsbetrug oder Steuerfälschung angewandt. Diese Statistikwerkzeuge basieren auf der Erkenntnis von Newcomb und Benford, dass sich Zahlen unseres Alltags in Stichproben nicht zufällig verteilen, sondern einer Gesetzmäßigkeit unterliegen. Die jeweiligen Ziffern verteilen sich nicht gleichmäßig von 0 bis 9, sondern kontraintuitiv ungleich. Die Ziffer 1 findet sich am häufigsten, nachfolgende Ziffern bis 9 dementsprechend weniger häufig. Bisher ist nicht bekannt, ob die Benford-Verteilung auch für wissenschaftliche Arbeiten aus der Anästhesie gilt. Im Rahmen der vorgestellten Studie wurde nun untersucht, ob alle Zahlen der eingereichten Abstracts für den Jahreskongress 2009 der Schweizerischen Gesellschaft für Anästhesie und Reanimation (SGAR) dieser Verteilung unterliegen. Ein gefälschter Abstract wurde ebenfalls in die Untersuchung eingebunden. Der χ2-Test wurde als statistische Methode zur Untersuchung der Differenz von erwarteten und beobachteten Werten genutzt. Als Signifikanzniveau wurde p < 0,05 festgelegt. Die Verteilung der ersten Ziffer aller Zahlen der 77 Abstracts (1800 Zahlen) entspricht der Benford-Verteilung. Der gefälschte Abstract konnte statistisch mit einer signifikanten Abweichung von der erwarteten Verteilung detektiert werden. Auch wenn durch diese Methode kein Zusammenhang zwischen statistischer Auffälligkeit und Unwahrheit hergestellt werden kann, gibt sie zumindest einen Warnhinweis, der zu einer intensiveren Auseinandersetzung mit den Rohdaten führen sollte. Dies sind nun erste Hinweise, dass Methoden der Revision im Finanzbereich auch auf medizinische Belange übertragen werden können.

Abstract

Fraud is as old as Mankind. There are an enormous number of historical documents which show the interaction between truth and untruth; therefore it is not really surprising that the prevalence of publication discrepancies is increasing. More surprising is that new cases especially in the medical field generate such a huge astonishment. In financial mathematics a statistical tool for detection of fraud is known which uses the knowledge of Newcomb and Benford regarding the distribution of natural numbers. This distribution is not equal and lower numbers are more likely to be detected compared to higher ones. In this investigation all numbers contained in the blinded abstracts of the 2009 annual meeting of the Swiss Society of Anesthesia and Resuscitation (SGAR) were recorded and analyzed regarding the distribution. A manipulated abstract was also included in the investigation. The χ2-test was used to determine statistical differences between expected and observed counts of numbers. There was also a faked abstract integrated in the investigation. A p<0.05 was considered significant. The distribution of the 1,800 numbers in the 77 submitted abstracts followed Benford’s law. The manipulated abstract was detected by statistical means (difference in expected versus observed p<0.05). Statistics cannot prove whether the content is true or not but can give some serious hints to look into the details in such conspicuous material. These are the first results of a test for the distribution of numbers presented in medical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Benford F (1938) The law of anomalous numbers. Proc Am Philos Soc 78:551–572

    Google Scholar 

  2. Bolton R, Hand D (2002) Statistical fraud detection: a review. Stat Sci 17:235–255

    Article  Google Scholar 

  3. Bridler R, Bernath C (2010) Publication Bias und Reboxetin. Schweiz Arztez 91:1917–1918

    Google Scholar 

  4. Buyse M, George S, Evans S et al (1999) The role of biostatistics in the prevention, detection and treatment of fraud in clinical trials. Stat Med 18:3435–3451

    Article  PubMed  CAS  Google Scholar 

  5. Diekmann A, Jann B (2010) Benford’s law and fraud detection: facts and legends. ETH Zurich Working Paper Sociology No 8, S 1–7

  6. Editor-in-Chief (2011) Study of the systemic and pulmonary oxidative stress status during exposure to propofol and sevoflurane anaesthesia during thoracic surgery: retraction. Eur J Anaesthesiol 28:74

    Google Scholar 

  7. Fanelli D (2009) How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data. PLoS ONE 4:e5738

    Article  PubMed  Google Scholar 

  8. Gigerenzer G (2008) Bauchentscheidungen: Die Intelligenz des Unbewussten und die Macht der Intuition. Bertelsmann, München

  9. Günnel S, Tödter K-H (2007) Does Benford’s law hold in economic research and forecasting? In: Bundesbank D (Hrsg) Deutsche Bundesbank: Discussion Paper Series 1: Economic Studies. Frankfurt, S 1–40

  10. Hill TP (1995) A statistical derivation of the significant-digit law. Stat Sci 10:354–363

    Google Scholar 

  11. Hill TP (1995) The significant-digit phenomenon. Sci Am 102:322–327

    Google Scholar 

  12. Johnson P (2010) Scott Reuben, a former Baystate doctor who faked research, sentenced to 6 months for health care fraud. In:http://www.masslive.com/news/index.ssf/2010/06/scott_reuben_a_former_baystate.html?ref=us

  13. Lamontagne L, Marchand M, Lu F et al (2006) Adaptive fraud detection using Benford’s law. In: Gao Y, Japkowicz N (Hrsg) Advances in artificial intelligence. Springer, Berlin Heidelberg New York Tokio, S 347

  14. Lowes R (2010) Anesthesiologist sentenced to 6 months for faked research. In: Medscape Anesthesiology from WebMD. http://www.medscape.com/viewarticle/724381?src=top10

  15. Moore RA, Derry S, Mcquay HJ (2010) Fraud or flawed: adverse impact of fabricated or poor quality. Anaesthesia 65:327–330

    Article  PubMed  CAS  Google Scholar 

  16. Newcomb S (1881) Note on the frequency of use of the different digits in natural numbers. Am J Math 4:39–40

    Article  Google Scholar 

  17. Nigrini MJ (1996) A taxpayer compliance application of Benford’s law. J Am Taxation Assoc 18:72–91

    Google Scholar 

  18. Rada R (2005) A case study of a retracted systematic review on interactive health communications: impact on media, scientists and patients. J Med Internet Res 7:e18

    Article  PubMed  Google Scholar 

  19. Shafer SL (2009) Notice of retraction. Anesth Analg 108:1350

    Article  PubMed  Google Scholar 

  20. Yentis SM (2010) Another kind of ethics: from corrections to retractions. Anaesthesia 65:1163–1172

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Die Autoren bedanken sich bei Dr. M. Jöhr, Luzern, für die kritische Durchsicht des Manuskripts und die kritischen Hinweise.

Interessenkonflikt

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Schüpfer PhD, MBA, HSG.

Additional information

Autor und Koautoren haben gleichberechtigt an der Manuskripterstellung beigetragen. Diese Untersuchung erhielt keine finanzielle Förderung.

Anhang

Anhang

Abstract 1, manipuliert

Effect of intravenous fluids on blood coagulation assessed by rotation thromboelastometry

Background and Objectives

Impairment of blood coagulation is one of the main side effects of colloids, particularly with artificial colloids such as hydroxyethyl starch (HES) and gelatine preparations. This pilot animal study aimed to evaluate the effect of a standard crystalloid or colloid intravenous fluid bolus on blood coagulation assessed by rotation thromboelastometry (ROTEM®; Pentapharm GmbH, Munich, Germany).

Methods

Piglets (n = 16, weight 23 ± 7 kg) were infused with 5 ml/kg fluid boluses of either normal saline (NS), 4% gelatine, 20% albumin or 6% HES 130/0.4 (n = 4 per 6 and 30 min. after fluid administration. The following ROTEM® parameters are reported: CT (clotting time [sec]), CFT (clot formation time [sec]) and MCF (maximum clot firmness [mm]) in the EXTEM and INTEM and MCF in the FIBTEM test. Kruskal-Wallis test was applied and intergroup comparisons were performed by post-hoc Mann-Whitney-U test followed by Bonferroni correction (significance level α = 0.05/5 = 0.01).

Results

Tab. 1.

Tab. 1 Changes of ROTEM® parameters (median (range)) after fluid bolus. CT change (EXTEM and INTEM) was not different between the 4 fluids tested

Conclusion

HES and gelatine showed a stronger impairment of blood coagulation compared to albumin or normal saline. Remarkably, this was observed after only moderate volume loading in this pig model.

Abstract, original

Effect of intravenous fluids on blood coagulation assessed by rotation thromboelastometry

Background and Objectives

Impairment of blood coagulation is one of the main side effects of colloids, particularly with artificial colloids such as hydroxyethyl starch (HES) and gelatine preparations. This pilot animal study aimed to evaluate the effect of a standard crystalloid or colloid intravenous fluid bolus on blood coagulation assessed by rotation thromboelastometry (ROTEM®; Pentapharm GmbH, Munich, Germany).

Methods

Piglets (n = 32, weight 5.1 ± 0.4 kg) were infused with 20 ml/kg fluid boluses of either normal saline (NS), 4% gelatine, 5% albumin or 6% HES 130/0.4 (n = 8 per group) over a period of 2 min. Blood samples were analyzed with ROTEM® before and 1 min after fluid administration. The following ROTEM® parameters are reported: CT (clotting time [sec]), CFT (clot formation time [sec]) and MCF (maximum clot firmness [mm]) in the EXTEM and INTEM and MCF in the FIBTEM test. Kruskal-Wallis test was applied and intergroup comparisons were performed by post-hoc Mann-Whitney-U test followed by Bonferroni correction (significance level α = 0.05/6 = 0.0083).

Results

Tab. 2.

Tab. 2 Changes of ROTEM® parameters (median (range)) after fluid bolus. CT change (EXTEM and INTEM) was not different between the four fluids tested

Conclusion

HES and gelatine showed a stronger impairment of blood coagulation compared to albumin or normal saline. Remarkably, this was observed after only moderate volume loading in this pig model.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schüpfer, G., Hein, J., Casutt, M. et al. Vom Finanz- zum Wissenschaftsbetrug. Anaesthesist 61, 537–542 (2012). https://doi.org/10.1007/s00101-012-2028-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-012-2028-y

Schlüsselwörter

Keywords

Navigation