Skip to main content

Advertisement

Log in

Mesenchymal stem cell transplantation in polytrauma: Evaluation of bone and liver healing response in an experimental rat model

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

Trauma is the most common cause of death of young people in the world. As known, mesenchymal stem cells (MSCs) accelerate tissue regeneration mechanisms. In our study, we aimed to investigate the effects of MSCs transplantation on the healing of liver and bone tissue by considering trauma secondary inflammatory responses.

Methods

56 adult Wistar-albino rats were divided into two groups: the polytrauma (liver and bone) (n = 28), and the liver trauma group (n = 28). At 36 h and 5th day after surgery, both rats with polytrauma and with isolated liver injury received either intravenous (IV) or intraperitoneal (IP) injections of MSCs (one million cells per kg body weight). Untreated groups received IV and IP saline injections. At day 21 after surgery, liver, tibia and fibula of the subjects were excised and evaluated for histopathologic and histomorphometric examination. Additionally, whole blood count (white blood cells, hemoglobin and platelets), C-reactive protein (CRP), glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, blood gas, and trauma markers interleukin-1B (IL-1B), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF alpha) levels were investigated.

Results

In general, MSC transplantations were well tolerated by the subjects. It was found that ALT, CRP, albumin were significantly lower in rats which received MSCs (p < 0.001). Inflammation of the liver and bone tissue in the MSC-injected rats were significantly lower than that of the untreated groups.

Conclusions

Herewith we have shown that MSC infusion in posttraumatic rats leads to less aggressive and more effective consequences on liver and bone tissue healing. Human MSC treatment for trauma is still in early stages of development; thus standard protocols, and patient inclusion criteria should be established beforehand clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Peden M, McGee K, Sharma G. The injury chart book: a graphical overview of the global burden of injuries. Geneva, World Health Organization, 2002.

  2. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17:11–22.

    CAS  PubMed  Google Scholar 

  3. Çelebi B, Elçin AE, Elçin YM. Proteome analysis of rat bone marrow mesenchymal stem cell differentiation. J Proteome Res. 2010;9(10):5217–27.

    Article  PubMed  Google Scholar 

  4. Baykan E, Koc A, Elçin AE, Elçin YM. Evaluation of a biomimetic poly(ε-caprolactone)/β-tricalcium phosphate multispiral scaffold for bone tissue engineering: in vitro and in vivo studies. Biointerphases. 2014;9:029011.

    Article  PubMed  Google Scholar 

  5. Emin N, Koç A, Durkut S, Elçin AE, Elçin YM. Engineering of rat articular cartilage on porous sponges: Effects of TGF-beta 1 and microgravity bioreactor culture. Artif Cell Blood Sub. 2008;36(2):123–37.

    Article  CAS  Google Scholar 

  6. Beşaltı Ö, Aktaş Z, Can P, Akpınar E, Elçin AE, Elçin YM. The use of autologous neurogenically-induced bone marrow-derived mesenchymal stem cells for the treatment of paraplegic dogs without nociception due to spinal trauma. J Vet Med Sci. 2016;78(9):1465–73.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sikand M, Williams K, White C, Moran CG. The financial cost of treating polytrauma: implications for tertiary referral centres in the United Kingdom. Injury. 2005;36(6):733–7.

    Article  CAS  PubMed  Google Scholar 

  8. Hoffmann J, Glassford AJ, Doyle TC, Robbins RC, Schrepfer S, Pelletier MP. Angiogenic effects despite limited cell survival of bone marrow-derived mesenchymal stem cells under ischemia. Thorac Cardiov Surg. 2010;58(3):136–42.

    Article  CAS  Google Scholar 

  9. Plaschke K. Human adult mesenchymal stem cells improve rat spatial cognitive function after systemic hemorrhagic shock. Behav Brain Res. 2009;201(2):332–7.

    Article  PubMed  Google Scholar 

  10. Abdollahi H, Harris LJ, Zhang P, McIlhenny S, Srinivas V, Tulenko T, DiMuzio PJ. The role of hypoxia in stem cell differentiation and therapeutics. J Surg Res. 2011;165(1):112–7.

    Article  CAS  PubMed  Google Scholar 

  11. Baumann H, Gauldie J. The acute phase response. Immunol Today. 1994;15(2):74–80.

    Article  CAS  PubMed  Google Scholar 

  12. Kim PK, Deutschman CS. Inflammatory responses and mediators. Surg Clin North Am. 2000;80(3):885–94.

    Article  CAS  PubMed  Google Scholar 

  13. Keel M, Trentz O. Pathophysiology of polytrauma. Injury. 2005;36(6):691–709.

    Article  PubMed  Google Scholar 

  14. Du Clos TW. Function of C-reactive protein. Ann Med. 2000;32(4):274–8.

    Article  CAS  PubMed  Google Scholar 

  15. Çelebi B, Elçin YM. Proteome analysis of rat bone marrow mesenchymal stem cell subcultures. J Proteome Res. 2009;8(5):2164–72.

    Article  PubMed  Google Scholar 

  16. Odabas S, Elçin AE, Elçin YM. Isolation and characterization of mesenchymal stem cells. Methods Mol Biol. 2014;1109:47–63.

    Article  CAS  PubMed  Google Scholar 

  17. Conover WJ. Chapter 5-Some methods based on ranks, Sect. 5.2 Several independent samples. Multiple comparison test. In: Conower WJ, editor. Practical Nonparametric Statistics. 2nd ed. New York: Wiley; 1980. pp. 229–39.

    Google Scholar 

  18. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  19. Cox JM, Kalns JE. Development and characterization of a rat model of nonpenetrating liver trauma. Comp Med. 2010;60(3):218–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Scalea TM, Boswell SA, Baron BJ, Ma OJ. Chapter 260. Abdominal trauma. In: Tintinalli JE, editor. Tintinalli’s emergency medicine: a comprehensive study guide. New York: McGraw-Hill; 2013. pp. 1765–70.

    Google Scholar 

  21. Sun L, Fan X, Zhang L, Shi G, Aili M, Lu X, Jiang T, Zhang Y. Bone mesenchymal stem cell transplantation via four routes for the treatment of acute liver failure in rats. Int J Mol Med. 2014;34(4):987–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nathwani RA, Pais S, Reynolds TB, Kaplowitz N. Serum alanine aminotransferase in skeletal muscle diseases. Hepatology. 2005;41:380–2.

    Article  CAS  PubMed  Google Scholar 

  23. Kurtz DM, Travlos GS. The clinical chemistry of laboratory animals. 3rd ed. CRC Press; 2017.

  24. Kaplan LJ, Frangos S. Clinical review: Acid-base abnormalities in the intensive care unit—Part II. Crit Care. 2005;9(2):198–203.

    Article  PubMed  Google Scholar 

  25. Jeng JC, Jablonski K, Bridgeman A, Jordan MH. Serum lactate, not base deficit, rapidly predicts survival after major burns. Burns. 2002;28(2):161–6.

    Article  PubMed  Google Scholar 

  26. Krumina G, Babarykin D, Krumina Z, Paegle I, Suhorukov O, Vanags D, Makarenkova G, Nikulshin S, Folkmane I. Effects of systemically transplanted allogeneic bone marrow multipotent mesenchymal stromal cells on rats’ recovery after experimental polytrauma. J Trauma Acute Care Surg. 2013;74(3):785–91.

    Article  CAS  PubMed  Google Scholar 

  27. Babarikins D, Krumina G, Paegle I, Amerika D, Krūmiņa Z, Vanags D, Tihomirova T. Allogeneic bone marrow multipotent mesenchymal stromal cells and polytrauma repair: the role of fractionated on the basis of molecular mass red beetroot juice in the prevention of transplanted cells side effects in rats. Proc Latvian Acad Sci. 2013;67(1):52–60.

    Google Scholar 

  28. Goldwasser P, Feldman J. Association of serum albumin and mortality risk. J Clin Epidemiol. 1997;50(6):693–703.

    Article  CAS  PubMed  Google Scholar 

  29. Yilmaz E, Bor C, Uyar M, Demirag K, Cankayali I. The effect of lactate, albumin, C-reactive protein, PaO2/FiO2 and glucose levels of trauma patients at the time of administration to intensive care unit on mortality. Turk J Intense Care. 2014;12:82–5.

    Google Scholar 

  30. Fröhlich M, Hildebrand F, Weuster M, Mommsen P, Mohr J, Witte I, Raeven P, Ruchholtz S, Flohé S, van Griensven M, Pape HC, Pfeifer R. Induced hypothermia reduces the hepatic inflammatory response in a swine multiple trauma model. J Trauma Acute Care Surg. 2014;76(6):1425–32.

    Article  PubMed  Google Scholar 

  31. Voss JO, Loebel C, Bara JJ, Fussinger MA, Duttenhoefer F, Alini M, Stoddart MJ. Effect of short-term stimulation with interleukin-1beta and differentiation medium on human mesenchymal stromal cell paracrine activity in coculture with osteoblasts. Biomed Res Int. 2015; 714230.

  32. Lange J, Sapozhnikova A, Lu C, Hu D, Li X, Miclau T, Marcucio RS. Action of IL-1beta during fracture healing. J Orthop Res. 2010;28(6):778–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kamiya A, Inagaki Y. Stem and progenitor cell systems in liver development and regeneration. Hepatol Res. 2015;45(1):29–37.

    Article  PubMed  Google Scholar 

  34. Gruttadauria S, Grosso G, Pagano D, Biondi A, Echeverri GJ, Seria E, Pietrosi G, Liotta R, Basile F, Gridelli B. Marrow-derived mesenchymal stem cells restore biochemical markers of acute liver injury in experimental model. Transplant Proc. 2013; 45(2):480–486.

    Article  CAS  PubMed  Google Scholar 

  35. Carvalho AB, Quintanilha LF, Dias JV, Paredes BD, Mannheimer EG, Carvalho FG, Asensi KD, Gutfilen B, Fonseca LM, Resende CM, Rezende GF, Takiya CM, de Carvalho AC, Goldenberg RC. Bone marrow multipotent mesenchymal stromal cells do not reduce fibrosis or improve function in a rat model of severe chronic liver injury. Stem Cells. 2008;26(5):1307–14.

    Article  CAS  PubMed  Google Scholar 

  36. Polat O, Polat G, Karahuseyinoglu S, Kutlay NY, Tasci AG, Erdemli E, Tukun A, Avunduk MC, Küplülü S, Demirtas M. Bone fracture healing with umbilico-placental mononuclear cells: a controlled animal study. Eur J Trauma Emerg Surg. 2010;36(1):60–6.

    Article  PubMed  Google Scholar 

  37. Wiegner R, Rudhart NE, Barth E, Gebhard F, Lampl L, Huber-Lang MS, Brenner RE. Mesenchymal stem cells in peripheral blood of severely injured patients. Eur J Trauma Emerg Surg. 2018;44(4):627–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Ankara University Research Fund (project number 15A0230005). A part of this study was presented as an abstract at the IXth Mediterranean Emergency Medicine Congress (MEMC), September 2017-Lisbon/Portugal and at the 22nd BIOMED 2017, Ankara, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ayça Koca Tanrıverdi or Yaşar Murat Elçin.

Ethics declarations

Conflict of interest

Y.M.E. is the founder and director of Biovalda Health Technologies, Inc. (Ankara, Turkey). The authors declare no competing interests in relation to this article. The authors are alone responsible for the content and writing of the paper.

Statement of animal rights

This research involved animals as subjects of the study. All procedures performed involving animals were in accordance with the ethical standards of the institutional research committee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanrıverdi, A.K., Polat, O., Elçin, A.E. et al. Mesenchymal stem cell transplantation in polytrauma: Evaluation of bone and liver healing response in an experimental rat model. Eur J Trauma Emerg Surg 46, 53–64 (2020). https://doi.org/10.1007/s00068-019-01101-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-019-01101-9

Keywords

Navigation