Skip to main content

Advertisement

Log in

Monte Carlo systems used for treatment planning and dose verification

Monte-Carlo-basierte Bestrahlungsplanung und Dosisverifikation für die perkutane Strahlentherapie mit Linearbeschleunigern

  • Review Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations.

Zusammenfassung

Seit mehreren Jahrzehnten werden allgemein anwendbare Monte-Carlo-Codes zur Simulation des Strahlungstransports benutzt, um die Verteilung der absorbierten Dosis in der perkutanen Strahlentherapie mit Photonen und Elektronen zu evaluieren. Die damit erzielten Ergebnisse sind meist akkurater als solche, die mit nichtstochastischen Methoden herkömmlicher Bestrahlungsplanungssysteme erzielt werden können. Wegen des damit verbundenen Arbeitsaufwands und der langen Dauer der Berechnungen wurden Monte-Carlo-Simulationen von Dosisverteilungen in der konventionellen Strahlentherapie in der Vergangenheit im Wesentlichen in der Forschung eingesetzt. Im Bemühen, Monte-Carlo--Codes auch für die klinische Routine zur Verfügung zu stellen, haben einzelne Forschergruppen und Firmen Bestrahlungsplanungs- und Dosisverifikationssysteme entwickelt, die teilweise oder ganz auf Monte-Carlo-Algorithmen aufbauen. Der vorliegende Artikel gibt eine umfassende Übersicht der derzeit existierenden Monte-Carlo-Systeme, die benutzt werden können, um einen konventionellen Bestrahlungsplan einer Photonen- und Elektronentherapie zu berechnen oder zu verifizieren. Im Fokus standen dabei die Systeme, die entweder frei oder kommerziell erhältlich sind, also für jeden Interessierten zur Verfügung stehen, und die keine eigene Programmierung von Seiten des Endnutzers erfordern. Die Kenndaten der unterschiedlichen Systeme werden dargestellt und Rechenzeiten verglichen, die benötigt werden, um eine gegebenen Aufgabe zu lösen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Reynaert N, van der Marck SC, Schaart DR et al (2007) Monte Carlo treatment planning for photon and electron beams. Radiat Phys Chem 76:643–686

    Article  CAS  Google Scholar 

  2. Cygler J, Battista JJ, Scrimger JW et al (1987) Electron dose distributions in experimental phantoms: a comparison with 2D pencil beam calculations. Phys Med Biol 32:1073–1083

    Article  CAS  PubMed  Google Scholar 

  3. Ma C‑M, Mok E, Kapur A et al (1999) Clinical implementation of a Monte Carlo treatment planning system. Med Phys 26:2133–2143

    Article  CAS  PubMed  Google Scholar 

  4. Arnfield MR, Hartmann-Siantar C, Siebers J et al (2000) The impact of electron transport on the accuracy of computed dose. Med Phys 27:1266–1274

    Article  CAS  PubMed  Google Scholar 

  5. Miften M, Wiesmeyer M, Kapur A et al (2001) Comparison of RTP dose distributions in heterogeneous phantoms with the BEAM Monte Carlo simulation system. J Appl Clin Med Phys 2:21–31

    Article  CAS  PubMed  Google Scholar 

  6. De Vlamynck K, Palmans H, Verhaegen F et al (2007) Dose measurements compared with Monte Carlo simulations of narrow 6 MV multileaf collimator shaped photon beams. Med Phys 34:4818–4853

    Article  Google Scholar 

  7. Rincón M, Sánchez-Doblado F, Perucha M et al (2001) A Monte Carlo approach for small electron beam dosimetry. Radiother Oncol 58:179–185

    Article  PubMed  Google Scholar 

  8. Sánchez-Doblado F, Andreo P, Capote R et al (2003) Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams. Phys Med Biol 48:2081–2099

    Article  PubMed  Google Scholar 

  9. Chetty I, Curran B, Cygler J et al (1999) Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med Phys 26:1874–1882

    Article  Google Scholar 

  10. Alfonso R, Andreo P, Capote R et al (2008) A new formalism for reference dosimetry of small and nonstandard fields. Med Phys 35:5179–5186

    Article  CAS  PubMed  Google Scholar 

  11. Das IJ, Ding GX, Ahnesjö A (2008) Small fields: nonequilibrium radiation dosimetry. Med Phys 35:206–215

    Article  PubMed  Google Scholar 

  12. Brualla L, Palanco-Zamora R, Wittig A et al (2009) Comparison between PENELOPE and electron Monte Carlo simulations of electron fields used in the treatment of conjunctival lymphoma. Phys Med Biol 54:5469–5481

    Article  CAS  PubMed  Google Scholar 

  13. Panettieri V, Barsoum P, Westermark M et al (2009) AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE. Radiother Oncol 93:94–101

    Article  PubMed  Google Scholar 

  14. Brualla L, Palanco-Zamora R, Steuhl K‑P et al (2011) Monte Carlo simulations applied to conjunctival lymphoma radiotherapy treatment. Strahlenther Onkol 187:492–498

    Article  PubMed  Google Scholar 

  15. Brualla L, Mayorga PA, Flühs A et al (2012) Retinoblastoma external beam photon irradiation with a special “D”-shaped collimator: a comparison between measurements, Monte Carlo simulation and a treatment planning system calculation. Phys Med Biol 57:7741–7751

    Article  CAS  PubMed  Google Scholar 

  16. Brualla L, Zaragoza FJ, Sempau J et al (2012) Electron irradiation of conjunctival lymphoma-Monte Carlo simulation of the minute dose distribution and technique optimization. Int J Radiat Oncol Biol Phys 83:1330–1337

    Article  PubMed  Google Scholar 

  17. Mayorga PA, Brualla L, Sauerwein W et al (2014) Monte Carlo study for designing a dedicated “D”-shaped collimator used in the external beam radiotherapy of retinoblastoma patients. Med Phys 41:011714

    Article  CAS  PubMed  Google Scholar 

  18. Kawrakow I, Fippel M, Friedrich K (1996) 3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC). Med Phys 23:445–447

    Article  CAS  PubMed  Google Scholar 

  19. Sempau J, Wilderman S, Bielajew A (2000) DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys Med Biol 45:2263–2291

    Article  CAS  PubMed  Google Scholar 

  20. Fippel M (1999) Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys 26:1466–1475

    Article  CAS  PubMed  Google Scholar 

  21. Kawrakow I, Fippel M (2000) VMC++, a fast MC algorithm for radiation treatment planning. In: Schlegel W, Bortfeld T (eds) The use of computers in radiation therapy, XIIIth International Conference, Heidelberg (Germany). Springer, Heidelberg, pp 126–128

    Chapter  Google Scholar 

  22. Kawrakow I, Fippel M (2000) Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC. Phys Med Biol 45:2163–2183

    Article  CAS  PubMed  Google Scholar 

  23. Bueno G, Déniz O, Carrascosa CB et al (2009) Fast Monte Carlo simulation on a voxelized human phantom deformed to a patient. Med Phys 36:5162–5174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Habib B, Poumarede B, Tola F et al (2010) Evaluation of PENFAST – A fast Monte Carlo code for dose calculations in photon and electron radiotherapy treatment planning. Phys Med 26:17–25

    Article  CAS  PubMed  Google Scholar 

  25. Badal A, Sempau J (2006) A package of Linux scripts for the parallelization of Monte Carlo simulations. Comput Phys Commun 175:440–450

    Article  CAS  Google Scholar 

  26. Jia X, Gu X, Sempau J et al (2010) Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport. Phys Med Biol 55:3077–3086

    Article  PubMed  Google Scholar 

  27. Jia X, Gu X, Graves YJ, Folkerts M et al (2011) GPU-based fast Monte Carlo simulation for radiotherapy dose calculation. Phys Med Biol 56:7017–7031

    Article  PubMed  Google Scholar 

  28. Jenkins TM, Nelson WR, Rindi A (eds) (1988) Monte Carlo transport of electrons and photons. Plenum Press, New York

    Google Scholar 

  29. Ma C‑M, Faddegon BA, Rogers DWO et al (1997) Accurate characterization of the Monte Carlo calculated electron beams for radiotherapy. Med Phys 24:401–417

    Article  CAS  PubMed  Google Scholar 

  30. DeMarco JJ, Solberg TD, Smathers JB (1998) A CT-based Monte Carlo simulation tool for dosimetry planning and analysis. Med Phys 25:1–11

    Article  CAS  PubMed  Google Scholar 

  31. Kapur A, Ma C‑M, Mok E et al (1998) Monte Carlo calculations of clinical electron beam output factors. Phys Med Biol 43:3479–3494

    Article  CAS  PubMed  Google Scholar 

  32. Faddegon BA, Balogh J, Mackenzie R et al (1998) Clinical considerations of Monte Carlo for electron radiotherapy treatment planning. Radiat Phys Chem 35:217–228

    Article  Google Scholar 

  33. Wang L, Chui C, Lovelock M (1998) A patient-specific Monte Carlo dose-calculation method for photon beams. Med Phys 25:867–878

    Article  CAS  PubMed  Google Scholar 

  34. Andreo P (1991) Monte Carlo techniques in medical radiation physics. Phys Med Biol 36:861–920

    Article  CAS  PubMed  Google Scholar 

  35. Verhaegen F, Seuntjens J (2003) Monte Carlo modelling of external radiotherapy photon beams. Phys Med Biol 48:R107–R164

    Article  CAS  PubMed  Google Scholar 

  36. Rogers DWO (2006) Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol 51:R287–R301

    Article  CAS  PubMed  Google Scholar 

  37. Spezi E, Lewis G (2008) An overview of Monte Carlo treatment planning for radiotherapy. Radiat Prot Dosimetry 131:123–129

    Article  CAS  PubMed  Google Scholar 

  38. Seco J, Verhaegen F (2013) Monte Carlo techniques in radiation therapy. CRC Press, Boca Raton

    Google Scholar 

  39. Kawrakow I (2000) Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys 27:485–498

    Article  CAS  PubMed  Google Scholar 

  40. Sempau J, Acosta E, Baró J et al (1997) An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nucl Instrum Methods Phys Res B 132:377–390

    Article  CAS  Google Scholar 

  41. Salvat F, Fernández-Varea JM, Sempau J (2011) PENELOPE 2011 – A code system for Monte Carlo simulation of electron and photon transport. OECD Nuclear Energy Agency, Paris

    Google Scholar 

  42. Agostinelli S, Allison J, Amako K et al (2003) Geant4 – A simulation toolkit. Nucl Instrum Methods Phys Res A 506:250–303

    Article  CAS  Google Scholar 

  43. MCNPX Team (2002) MCNPX User’s Manual. LA-CP-02-408. RSICC CCC-715. Los Alamos National Laboratory, Los Alamos

  44. Goorley JT, James MR, Booth TE et al (2013) Initial MCNP6 release overview – MCNP6 Version 1.0. In: LA-UR-13-22934. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  45. Vilches M, García-Pareja S, Guerrero R et al (2007) Monte Carlo simulation of the electron transport through thin slabs: A comparative study of PENELOPE, GEANT3, Geant4, EGSnrc and MCNPX. Nucl Instrum Methods Phys Res B 254:219–230

    Article  CAS  Google Scholar 

  46. Vilches M, García-Pareja S, Guerrero R et al (2008) Monte Carlo simulation of the electron transport through air slabs: a comparative study of PENELOPE, GEANT3, Geant4 and EGSnrc. IEEE Trans Nucl Sci 55:710–716

    Article  Google Scholar 

  47. Vilches M, García-Pareja S, Guerrero R et al (2009) Multiple scattering of 13 and 20 MeV electrons by thin foils: a Monte Carlo study with GEANT, Geant4, and PENELOPE. Med Phys 36:3964–3970

    Article  CAS  PubMed  Google Scholar 

  48. Faddegon BA, Kawrakow I, Kubyshin Y et al (2009) The accuracy of EGSnrc, Geant4 and PENELOPE Monte Carlo systems for the simulation of electron scatter in external beam radiotherapy. Phys Med Biol 54:6151–6163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jabbari K (2011) Review of fast Monte Carlo codes for dose calculation in radiation therapy treatment planning. J Med Signals Sens 1:73–86

    PubMed  PubMed Central  Google Scholar 

  50. Kawrakow I (2000) VMC++, electron and photon Monte Carlo calculations optimized for radiation planning. In: Kling A, Barao F, Nakagawa M, Tavora L, Vaz P (eds) Advanced Monte Carlo for radiation physics, particle transport simulation and applications, Proceedings of the Monte Carlo 2000 Conference. Springer, Berlin, pp 229–236

    Google Scholar 

  51. Kawrakow I, Fippel M (2000) VMC++, a MC algorithm optimized for electron and photon beam dose calculations for RTP. In: World Congress on Medical Physics and Biomedical Engineering. Med Phys, Chicago (27:Meeting Issue)

    Google Scholar 

  52. Neuenschwander H, Mackie T, Reckwerdt P (1995) MMC – A high-performance Monte Carlo code for electron beam treatment planning. Phys Med Biol 40:543–574

    Article  CAS  PubMed  Google Scholar 

  53. Keall PJ, Hoban PW (1996) Super-Monte Carlo: A 3-D electron beam dose calculation algorithm. Med Phys 23:2023–2034

    Article  CAS  PubMed  Google Scholar 

  54. Deasy JO, Blanco AI, Clark VH (2003) CERR: a computational environment for radiotherapy research. Med Phys 30:979–985

    Article  PubMed  Google Scholar 

  55. Alexander A, DeBlois F, Stroian G et al (2007) MMCTP: a radiotherapy research environment for Monte Carlo and patient-specific treatment planning. Phys Med Biol 52:N297–N308

    Article  CAS  PubMed  Google Scholar 

  56. Abella V, Miró R, Juste B et al (2011) Comparison of MCNP5 dose calculations inside the RANDO phantom irradiated with a MLC LinAc photon beam against treatment planning system PLUNC. Prog Nucl Sci Technol 2:232–236

    Article  Google Scholar 

  57. Salguero FJ, Palma B, Arráns R et al (2009) Modulated electron radiotherapy treatment planning using a photon multileaf collimator for post-mastectomized chest walls. Radiother Oncol 93:625–632

    Article  PubMed  Google Scholar 

  58. Salguero FJ, Arráns R, Palma BA et al (2010) Intensity- and energy-modulated electron radiotherapy by means of an xMLC for head and neck shallow tumors. Phys Med Biol 55:1413–1427

    Article  PubMed  Google Scholar 

  59. Palma BA, Ureba Sánchez A, Salguero FJ et al (2012) Combined modulated electron and photon beams planned by a Monte-Carlo-based optimization procedure for accelerated partial breast irradiation. Phys Med Biol 57:1191–1202

    Article  PubMed  Google Scholar 

  60. Ureba A, Salguero FJ, Barbeiro AR et al (2014) MCTP system model based on linear programming optimization of apertures obtained from sequencing patient image data maps. Med Phys 41:081719

    Article  CAS  PubMed  Google Scholar 

  61. Rogers DWO, Walters BR, Kawrakow I (2011) BEAMnrc Users Manual. In: NRCC Report PIRS-0509(A)revL. National Research Council of Canada, Ottawa

    Google Scholar 

  62. Walters BR, Kawrakow I, Rogers DWO (2009) DOSXYZnrc users manual. In: NRCC Report PIRS-794revB. National Research Council of Canada, Ottawa

    Google Scholar 

  63. Mukumoto N, Tsujii K, Saito S et al (2009) A preliminary study of in-house Monte Carlo simulations: an integrated Monte Carlo verification system. Int J Radiat Oncol Biol Phys 75:571–579

    Article  PubMed  Google Scholar 

  64. Hartmann Siantar CL, Walling RS, Daly TP et al (2001) Description and dosimetric verification of the PEREGRINE Monte Carlo dose calculation system for photon beams incident on a water phantom. Med Phys 28:1322–1337

    Article  CAS  PubMed  Google Scholar 

  65. Schach von Wittenau AE, Cox LJ, Bergstrom PM et al (1999) Correlated histogram representation of Monte Carlo derived medical accelerator photon-output phase space. Med Phys 26:1196–1211

    Article  CAS  PubMed  Google Scholar 

  66. Nelson R, Hirayama H, Rogers DWO (1985) The EGS4 Code System. SLAC-265. SLAC, Stanford

    Google Scholar 

  67. Janssen JJ, Korevaar EW, van Battum LJ et al (2001) A model to determine the initial phase space of a clinical electron beam from measured data. Phys Med Biol 46:269–286

    Article  CAS  PubMed  Google Scholar 

  68. Fix MK, Cygler J, Frei D et al (2013) Generalized eMC implementation for Monte Carlo dose calculation of electron beams from different machine types. Phys Med Biol 58:2841–2859

    Article  PubMed  Google Scholar 

  69. Pena J, González-Castaño DM, Gómez F et al (2009) eIMRT: a web platform for the verification and optimization of radiation treatment plans. J Appl Clin Med Phys 10:205–220

    Article  Google Scholar 

  70. Gómez A, Mouriño JC, Carril LM et al (2012) Execution of Monte Carlo treatment verification on Cloud using COMPSs platform. Third European Workshop on Monte Carlo Treatment Planning, Sevilla. Book of Abstract, pp 186–189

  71. Kawrakow I, Walters BR (2006) Efficient photon beam dose calculations using DOSXYZnrc with BEAMnrc. Med Phys 33:3046–3056

    Article  CAS  PubMed  Google Scholar 

  72. Low DA, Harms WB, Mutic S et al (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25:656–661

    Article  CAS  PubMed  Google Scholar 

  73. Pena J, González-Castaño DM, Gómez F et al (2007) Automatic determination of primary electron beam parameters in Monte Carlo simulation. Med Phys 34:1076–1084

    Article  CAS  PubMed  Google Scholar 

  74. Kawrakow I, Rogers DWO, Walters BR (2004) Large efficiency improvements in BEAMnrc using directional bremsstrahlung splitting. Med Phys 31:2883–2898

    Article  CAS  PubMed  Google Scholar 

  75. Brainlab (2011) iPlan RT version 4.5, Clinical user guide, rev. 1.1. Brainlab, Feldkirchen

    Google Scholar 

  76. Fippel M, Haryanto F, Dohm O et al (2003) A virtual photon energy fluence model for Monte Carlo dose calculation. Med Phys 30:301–311

    Article  PubMed  Google Scholar 

  77. Fippel M (2004) Efficient particle transport simulation through beam modulating devices for Monte Carlo treatment planning. Med Phys 31:1235–1242

    Article  PubMed  Google Scholar 

  78. Berger MJ, Hubbell JH (1987) XCOM: Photon Cross Sections on a Personal Computer. NBSIR 87-3597. NIST, Gaithersburg

    Book  Google Scholar 

  79. Berger MJ (1993) ESTAR, PSTAR, and ASTAR: computer programs for calculating stopping-power and range tables for electrons, protons, and helium ions. NISTIR 4999. NIST, Gaithersburg

    Google Scholar 

  80. Isambert A, Brualla L, Lefkopoulos D (2009) Evaluation of the material assignment method used by a Monte Carlo treatment planning system. Cancer Radiother 13:744–746

    Article  CAS  PubMed  Google Scholar 

  81. Isambert A, Brualla L, Benkebil M et al (2010) Determination of the optimal statistical uncertainty to perform electron-beam Monte Carlo absorbed dose estimation in the target volume. Cancer Radiother 14:89–95

    Article  CAS  PubMed  Google Scholar 

  82. Brualla L, Salvat F, Palanco-Zamora R (2009) Efficient Monte Carlo simulation of multileaf collimators using geometry-related variance-reduction techniques. Phys Med Biol 54:4131–4149

    Article  CAS  PubMed  Google Scholar 

  83. Berger M (1963) Monte Carlo calculation of the penetration and diffusion of fast charged particles. In: Alder B, Fernbach S, Rotenberg M (eds) Methods in computational physics, vol I. Academic Press, New York

    Google Scholar 

  84. Reynaert N, De Smedt B, Coghe M et al (2004) MCDE: a new Monte Carlo dose engine for IMRT. Phys Med Biol 49:N235–N241

    Article  CAS  PubMed  Google Scholar 

  85. Sherouse GE, Chaney EL (1991) The portable virtual simulator. Int J Radiat Oncol Biol Phys 21:475–482

    Article  CAS  PubMed  Google Scholar 

  86. De Smedt B (2006) Development of a Monte Carlo dose engine for IMRT treatment planning. Ph. D. Thesis. Universiteit Gent, Gent

    Google Scholar 

  87. Li JS, Pawlicki T, Deng J, Jiang SB, Mok E, Ma C‑M (2000) Validation of a Monte Carlo dose calculation tool for radiotherapy treatment planning. Phys Med Biol 45:2969–2985

    Article  CAS  PubMed  Google Scholar 

  88. Ma C‑M, Li JS, Pawlicki T et al (2002) A Monte Carlo dose calculation tool for radiotherapy treatment planning. Phys Med Biol 47:1671–1689

    Article  CAS  PubMed  Google Scholar 

  89. Siebers JV, Keall PJ, Kim JO, Mohan R (2000) Performance benchmarks of the MCV Monte Carlo system. In: XIII International Conference on the Use of Computers in Radiation Therapy. Eds. W. Schlegel, T. Bortfeld. Springer, pp 129–131

  90. Siebers JV, Keall PJ, Kim JO, Mohan R (2002) A method for photon beam Monte Carlo multileaf collimator particle transport. Phys Med Biol 47:3225–3249

    Article  PubMed  Google Scholar 

  91. Usmani MN, Takegawa H, Takashina M et al (2014) Development and reproducibility evaluation of a Monte Carlo-based standard LINAC model for quality assurance of multi-institutional clinical trials. J Radiat Res 55:1131–1140

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sikora M, Dohm O, Alber M (2007) A virtual photon source model of an Elekta linear accelerator with integrated mini MLC for Monte Carlo based IMRT dose calculation. Phys Med Biol 52:4449–4463

    Article  CAS  PubMed  Google Scholar 

  93. Sikora M (2010) Virtual source modeling of photon beams for Monte Carlo based radiation therapy treatment planning. Ph. D. Thesis. University of Bergen, Bergen

    Google Scholar 

  94. Sikora M, Alber M (2009) A virtual source model of electron contamination of a therapeutic photon beam. Phys Med Biol 54:7329–7344

    Article  CAS  PubMed  Google Scholar 

  95. Wang L, Lovelock M, Chui C (1999) Experimental verification of a CT-based Monte Carlo dose-calculation method in heterogeneous phantoms. Med Phys 26:2626–2634

    Article  CAS  PubMed  Google Scholar 

  96. Traneus E, Ahnesjo A, Fippel M et al (2001) Application and verification of a coupled multi-source electron beam source model for Monte Carlo based treatment planning. Radiother Oncol 61:S102

    Google Scholar 

  97. Rodriguez M, Sempau J, Brualla L (2013) PRIMO: A graphical environment for the Monte Carlo simulation of Varian and Elekta linacs. Strahlenther Onkol 189:881–886

    Article  CAS  PubMed  Google Scholar 

  98. Belosi MF, Rodriguez M, Fogliata A et al (2014) Monte Carlo simulation of TrueBeam flattening-filter-free beams using Varian phase-space files: Comparison with experimental data. Med Phys 41:051707

    Article  PubMed  Google Scholar 

  99. Constantin M, Perl J, LoSasso T et al (2011) Modeling the TrueBeam linac using a CAD to Geant4 geometry implementation: Dose and IAEA-compliant phase space calculations. Med Phys 38:4018–4024

    Article  PubMed  Google Scholar 

  100. Lloyd SAM, Gagne IM, Bazalova-Carter M, Zavgorodni S (2016) Validation of Varian TrueBeam electron phase-spaces for Monte Carlo simulation of MLC-shaped fields. Med Phys 43:2894–2903

    Article  PubMed  Google Scholar 

  101. Rodriguez M, Sempau J, Fogliata A et al (2015) A geometrical model for the Monte Carlo simulation of the TrueBeam linac. Phys Med Biol 60:N219–N229

    Article  CAS  PubMed  Google Scholar 

  102. Capote R, Jeraj R, Ma C‑M et al (2006) Phase-space database for external beam radiotherapy. Report INDC(NDS)-0484. International Atomic Energy Agency, Vienna

    Google Scholar 

  103. Rodriguez M, Sempau J, Brualla L (2012) A combined approach of variance-reduction techniques for the efficient Monte Carlo simulation of linacs. Phys Med Biol 57:3013–3024

    Article  CAS  PubMed  Google Scholar 

  104. Brualla L, Sauerwein W (2010) On the efficiency of azimuthal and rotational splitting for Monte Carlo simulation of clinical linear accelerators. Radiat Phys Chem 79:929–932

    Article  CAS  Google Scholar 

  105. Sempau J, Badal A, Brualla L (2011) A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields. Med Phys 38:5887–5895

    Article  PubMed  Google Scholar 

  106. Downes P, Yaikhom G, Giddy JP et al (2009) High-performance computing for Monte Carlo radiotherapy calculations. Phil Trans R Soc A 367:2607–2617

    Article  CAS  PubMed  Google Scholar 

  107. Fix MK, Manser P, Frei D et al (2007) An efficient framework for photon Monte Carlo treatment planning. Phys Med Biol 52:N425–N437

    Article  PubMed  Google Scholar 

  108. Magaddino V, Manser P, Frei D et al (2011) Validation of the Swiss Monte Carlo Plan for a static and dynamic 6 MV photon beam. Z Med Phys 21:124–134

    Article  PubMed  Google Scholar 

  109. Bush K, Zavgorodni SF, Beckham WA (2007) Azimuthal particle redistribution for the reduction of latent phase-space variance in Monte Carlo simulations. Phys Med Biol 52:4345–4360

    Article  CAS  PubMed  Google Scholar 

  110. Bush K, Popescu IA, Zavgorodni S (2008) A technique for generating phase-space-based Monte Carlo beamlets in radiotherapy applications. Phys Med Biol 53:N337–N347

    Article  CAS  PubMed  Google Scholar 

  111. Bush K, Townson R, Zavgorodni S (2008) Monte Carlo simulation of RapidArc radiotherapy delivery. Phys Med Biol 53:N359–N370

    Article  CAS  PubMed  Google Scholar 

  112. Zavgorodni S, Bush K, Locke C, Beckham W (2007) Vancouver Island Monte Carlo (VIMC) system for radiotherapy treatment planning dosimetry and research. Radiother Oncol 84(Suppl. 1):S49

    Google Scholar 

  113. Zavgorodni S, Bush K, Locke C, Beckham W (2008) Vancouver Island Monte Carlo (VIMC) system for accurate radiotherapy dose calculations. 16th International Conference on Medical Physics, Dubai. Book of Abstracts, p 78

  114. Vandervoort EJ, Tchistiakova E, La Russa DJ et al (2014) Evaluation of a new commercial Monte Carlo dose calculation algorithm for electron beams. Med Phys 41:021711

    Article  PubMed  Google Scholar 

  115. Rodriguez M, Sempau J, Brualla L (2015) Technical note: Study of the electron transport parameters used in PENELOPE for the Monte Carlo simulation of linac targets. Med Phys 42:2877–2881

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the following persons for their help provided in preparing this review: Julio Almansa, Luca Cozzi, Nuria Escobar-Corral, Lluís Escudé, Matthias Fippel, Michael Fix, Andrea Flühs, Eric Franchisseur, Andrés Gómez, Diego González-Castaño, Damián Guirado, Marcelino Hermida-López, Gisela Hürtgen, Antonio Leal, Rodolfo del Moral, Carlos Mouriño, David Navarro Giménez, Josep Puxeu, José Manuel Reinoso, Carlos Sandín, Wolfgang Sauerwein, Josep Sempau, Emiliano Spezi, Hideki Takegawa, and Sergei Zavgorodni. We are grateful to the Deutsche Forschungsgemeinschaft (project BR 4043/3-1), the Spanish Ministerio de Economía y Competitividad (projects FPA 2012-31993 and FPA 2015-67694-P), the European Regional Development Fund (ERDF), and the Junta de Andalucía (FQM 0220, FQM 0387).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Brualla.

Ethics declarations

Conflict of interest

L. Brualla and M. Rodriguez declare that they are co-authors of PRIMO. A.M. Lallena declares that he has no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brualla, L., Rodriguez, M. & Lallena, A.M. Monte Carlo systems used for treatment planning and dose verification. Strahlenther Onkol 193, 243–259 (2017). https://doi.org/10.1007/s00066-016-1075-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-016-1075-8

Keywords

Schlüsselwörter

Navigation