Skip to main content
Log in

Three linked nomograms for predicting biochemical failure in prostate cancer treated with radiotherapy plus androgen deprivation therapy

Nomogramme für die Prognose eines biochemischen Rezidivs beim Prostatakarzinom nach Strahlentherapie und Androgendeprivationstherapie

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

Nomograms were established to predict biochemical recurrence (BCR) after radiotherapy (RT) with a low weight of the characteristic variables of RT and androgen deprivation therapy (ADT). Our aim is to provide a new stratified tool for predicting BCR at 4 and 7 years in patients treated using RT with radical intent.

Materials and methods

A retrospective, nonrandomized analysis was performed on 5044 prostate cancer (PCa) patients with median age 70 years, who received RT—with or without ADT—between November 1992 and May 2007. Median follow-up was 5.5 years. BCR was defined as a rise in serum prostate-specific antigen (PSA) of 2 ng/ml over the post-treatment PSA nadir. Univariate association between predictor variables and BCR was assessed by the log-rank test, and three linked nomograms were created for multivariate prognosis of BCR-free survival. Each nomogram corresponds to a category of the Gleason score—either 6,7, or 8–10—and all of them were created from a single proportional hazards regression model stratified also by months of ADT (0, 1–6, 7–12, 13–24, 25–36, 36–60). The performance of this model was analyzed by calibration, discrimination, and clinical utility.

Results

Initial PSA, clinical stage, and RT dose were significant variables (p < 0.01). The model showed a good calibration. The concordance probability was 0.779, improving those obtained with other nomograms (0.587, 0.571, 0.554) in the database. Survival curves showed best clinical utility in a comparison with National Comprehensive Cancer Network (NCCN) risk groups.

Conclusion

For each Gleason score category, the nomogram provides information on the benefit of adding ADT to a specific RT dose.

Zusammenfassung

Hintergrund

Es wurden Nomogramme etabliert, um ein biochemisches Rezidiv (BCR) nach einer Strahlentherapie (RT) vorhersagen zu können und den Einfluss der charakteristischen Variablen der RT und der Androgendeprivationstherapie (ADT) dabei möglichst gering zu halten. Unser Ziel ist es, ein neues stratifiziertes Instrument bereitzustellen, mit dem sich ein BCR nach 4 und 7 Jahren für Patienten vorhersagen lässt, die mit radikaler Absicht strahlentherapeutisch behandelt wurden.

Material und Methoden

Zwischen November 1992 und Mai 2007 wurde eine retrospektive, nichtrandomisierte Analyse von 5044 Prostatakarzinompatienten mit einem medianen Alter von 70 Jahren durchgeführt, die eine RT mit oder ohne ADT erhalten haben. Die mediane Nachbeobachtungszeit betrug 5,5 Jahre. Ein BCR wurde definiert als ein Anstieg des PSA-Werts im Serum von 2 ng/ml im Vergleich zum PSA-Nadir nach der Behandlung. Die univariate Beziehung zwischen den Prädiktorvariablen und dem BCR wurde mithilfe des Log-Rank-Tests untersucht. Es wurden drei miteinander zusammenhängende Nomogramme für die multivariate Prognose des BCR-freien Überlebens etabliert. Jedes Nomogramm entspricht einer Kategorie des Gleason-Score, entweder 6, 7, oder 8–10. Alle Nomogramme wurden mittels eines einzigen proportionalen Hazard-Regressionsmodells etabliert, das auch nach Monaten der ADT (0, 1–6, 7–12, 13–24, 25–36, 36–60) stratifiziert wurde. Die Aussagekraft dieses Modells wurde anhand von Kalibrierung, unterschiedlicher Behandlung und klinischem Nutzen analysiert.

Ergebnisse

Anfänglicher PSA-Wert, klinisches Stadium und die Dosis der RT waren signifikante Variablen (p < 0,01). Das Modell wies eine gute Kalibrierung auf. Die Konkordanzwahrscheinlichkeit lag bei 0,779, was eine Verbesserung gegenüber anderen Nomogrammen (0,587, 0,571 und 0,554) in der Datenbank bedeutet. Die Überlebenskurven zeigten den besten klinischen Nutzen im Vergleich zu Risikogruppen der National Comprehensive Cancer Network (NCCN).

Schlussfolgerung

Für jede Kategorie des Gleason-Score liefert das Nomogramm Informationen über den Nutzen der ADT zusätzlich zu einer spezifischen RT-Dosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lughezzani G, Briganti A, Karakiewicz PI (2010) et al Predictive and prognostic models in radical prostatectomy candidates: a critical analysis of the literature. Eur Urol 58:687–700

    Article  PubMed Central  PubMed  Google Scholar 

  2. Adamis S, Varkarakis IM (2014) Defining prostate cancer risk after radical prostatectomy. Eur J Surg Oncol (EJSO) 40:496–504

    Article  CAS  Google Scholar 

  3. Borque Á, del Amo J, Esteban LM, Ars E, Hernández C, Planas J (2013) et al Genetic predisposition to early recurrence in clinically localized prostate cancer. BJU Int 111:549–558

    Article  CAS  PubMed  Google Scholar 

  4. Krishnan V, Delouya G, Bahary JP, Larrivée S, Taussky D (2014) The Cancer of the Prostate Risk Assessment (CAPRA) score predicts biochemical recurrence in intermediate-risk prostate cancer treated with external beam radiotherapy (EBRT) dose escalation or low-dose rate (LDR) brachytherapy. BJU Int 114:865–871

    Article  PubMed  Google Scholar 

  5. Yoshida K, Yamazaki H, Takenaka T, Kotsuma T, Yoshida M, Masui K (2014) et al High-dose-rate interstitial brachytherapy in combination with androgen deprivation therapy for prostate cancer. Strahlenther Onkol 190:1015–1020

    Article  PubMed  Google Scholar 

  6. Badakhshi H, Graf R, Budach V, Wust P (2014) Permanent interstitial low-dose-rate brachytherapy for patients with low risk prostate cancer. Strahlenther Onkol (in press) doi:10.1007/s00066-014-0762-6

  7. Dal Pra A, Cury FL, Souhami L (2010) Combining radiation therapy and androgen deprivation for localized prostate cancer—a critical review. Curr Oncol 17:28–38

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Milecki P, Kwias Z, Martenka DJ (2007) Radiotherapy combined with hormonal therapy (RT-HT) in prostate cancer patients with low, intermediate, and high risk of biochemical recurrence: perspective and therapeutic gain analysis. Neoplasma 54:7–15

    CAS  PubMed  Google Scholar 

  9. Schiffmann J, Lesmana H, Tennstedt P, Beyer B, Boehm K, Platz V (2014) et al Additional androgen deprivation makes the difference: biochemical recurrence-free survival in prostate cancer patients after HDR brachytherapy and external beam radiotherapy. Strahlenther Onkol (in press) doi:10.1007/s00066-014-0794-y

  10. Kattan MW, Zelefsky MJ, Kupelian PA, Scardino PT, Fucks Z, Leibel SA (2000) Pretreatment nomogram for predicting the outcome of three-dimensional conformal radiotherapy in prostate cancer. J Clin Oncol 18:3352–3359

    CAS  PubMed  Google Scholar 

  11. Zelefsky MJ, Kattan MW, Fearn P, Fearon BL, Stasi JP, Shippy AM, Scardino PT (2007) Pretreatment nomogram predicting ten-year biochemical outcome of three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for prostate cancer. Urology 70:283–287

    Article  PubMed  Google Scholar 

  12. Williams S, Buyyounouski M, Kestin L, Duchesne G, Pickles T (2011) Predictors of androgen deprivation therapy efficacy combined with prostatic irradiation: the central role of tumor stage and radiation dose. Int J Radiat Oncol Biol Phys 79:724–731

    Article  CAS  PubMed  Google Scholar 

  13. Stoyanova R, Pahlajani NH, Egleston BL, Buyyounouski MK, Chen DY, Horwitz EM, Pollack A (2013) The impact of dose-escalated radiotherapy plus androgen deprivation for prostate cancer using 2 linked nomograms. Cancer 119:1080–1088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Epstein JI (2010) An update of the gleason grading system. J Urol 183:433–440

    Article  PubMed  Google Scholar 

  15. Roach M III, Hanks G, Thames H Jr, Schellhammer P, Shipley WU, Sokol GH, Sandler H (2006) Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 65:965–974

    Article  PubMed  Google Scholar 

  16. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  17. Steyerberg EW, Pencina MJ, Lingsma HF, Kattan MW, Vickers AJ, Van Calster B (2013) Assessing the incremental value of diagnostic and prognostic markers: a review and illustration. Eur J Clin Invest 42:216–228

    Article  Google Scholar 

  18. Gönen M, Heller G (2005) Concordance probability and discriminatory power in proportional hazards regression. Biometrika 92:965–970

    Article  Google Scholar 

  19. Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15:361–387

    Article  PubMed  Google Scholar 

  20. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

    Google Scholar 

  21. D’Amico AV, Whittington R, Malkowicz S, Schultz D, Blank K, Broderick GA, Tomaszewski JE, Renshaw AA, Kaplan I, Beard CJ, Wein A (1998) Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280:969–974

    Article  PubMed  Google Scholar 

  22. Mohler J, Bahnson RR, Boston B, Busby JE, D’Amico A, Eastham JA, Enke CA, George D, Horwitz EM, Huben RP, Kantoff P, Kawachi M, Kuettel M, Lange PH, Macvicar G, Plimack ER, Pow-Sang JM, Roach M III, Rohren E, Roth BJ, Shrieve DC, Smith MR, Srinivas S, Twardowski P, Walsh PC (2010) NCCN clinical practice guidelines in oncology: prostate cancer. J Natl Compr Canc Netw 8:162–200

    CAS  PubMed  Google Scholar 

  23. Borque A, Rubio-Briones J, Esteban LM, Sanz G, Domínguez-Escrig J, Ramírez-Backhaus M, Calatrava A, Solsona E (2014) Implementing the use of nomograms by choosing threshold points in predictive models. 2012 updated Partin Tables versus a European predictive nomogram for organ-confined disease in prostate cancer. BJU Int 113:878–886

    Article  PubMed  Google Scholar 

  24. Kuban D, Pollack A, Huang E, Levy L, Dong L, Starkschall G, Rosen I (2003) Hazards of dose escalation in prostate cancer radiotherapy Hazards of dose escalation in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 57:1260–1268

    Article  PubMed  Google Scholar 

  25. Bolla M, Van Tienhoven G, Warde P, Dubois JB, Mirimanoff RO, Storme G, Bernier J, Kuten A, Sternberg C, Billiet I, Torecilla JL, Pfeffer R, Cutajar CL, Van der Kwast T, Collette L (2010) External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol 11:1066–1073

    Article  CAS  PubMed  Google Scholar 

  26. Green HJ, Pakenham KI, Headley BC, Yaxley J, Nicol DL, Mactaggart PN, Swanson CE, Watson RB, Gardiner RA (2004) Quality of life compared during pharmacological treatments and clinical monitoring for non-localized prostate cancer: a randomized controlled trial. BJU Int 93:975–979

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support provided by Ipsen (Boulogne-Billancourt, France) in the development and maintenance of the RECAP database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose López-Torrecilla M.D. Ph.D..

Ethics declarations

Conflict of interest

J. López-Torrecilla, A. Boladeras, M.A. Cabeza, A. Zapatero, J. Jove, L.M. Esteban, I. Henriquez, M. Casaña, C. González-San Segundo, A. Gómez-Caamaño, J.L. Mengual, A. Hervás, J.L. Muñoz, and G. Sanz state that there are no conflicts of interest.

All studies on humans in the present manuscript were carried out with the approval of the responsible ethics committee with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Torrecilla, J., Boladeras, A., Cabeza, M. et al. Three linked nomograms for predicting biochemical failure in prostate cancer treated with radiotherapy plus androgen deprivation therapy. Strahlenther Onkol 191, 792–800 (2015). https://doi.org/10.1007/s00066-015-0866-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-015-0866-7

Keywords

Schlüsselwörter

Navigation