Skip to main content
Log in

Design and implementation of a “cheese” phantom-based Tomotherapy TLD dose intercomparison

Design und Anwendung eines „Cheese“-Phantoms basierend auf einem Tomotherapie-TLD-Dosimetrievergleich

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

The unique beam-delivery technique of Tomotherapy machines (Accuray Inc., Sunnyvale, Calif.) necessitates tailored quality assurance. This requirement also applies to external dose intercomparisons. Therefore, the aim of the 2014 SSRMP (Swiss Society of Radiobiology and Medical Physics) dosimetry intercomparison was to compare two set-ups with different phantoms.

Materials and methods

A small cylindrical Perspex phantom, which is similar to the IROC phantom (Imaging and Radiation Oncology Core, Houston, Tex.), and the “cheese” phantom, which is provided by the Tomotherapy manufacturer to all institutions, were used. The standard calibration plans for the TomoHelical and TomoDirect irradiation techniques were applied. These plans are routinely used for dose output calibration in Tomotherapy institutions. We tested 20 Tomotherapy machines in Germany and Switzerland. The ratio of the measured (Dm) to the calculated (Dc) dose was assessed for both phantoms and irradiation techniques. The Dm/Dc distributions were determined to compare the suitability of the measurement set-ups investigated.

Results

The standard deviations of the TLD-measured (thermoluminescent dosimetry) Dm/Dc ratios for the “cheese” phantom were 1.9 % for the TomoHelical (19 measurements) and 1.2 % (11 measurements) for the TomoDirect irradiation techniques. The corresponding ratios for the Perspex phantom were 2.8 % (18 measurements) and 1.8 % (11 measurements).

Conclusion

Compared with the Perspex phantom-based set-up, the “cheese” phantom-based set-up without individual planning was demonstrated to be more suitable for Tomotherapy dose checks. Future SSRMP dosimetry intercomparisons for Tomotherapy machines will therefore be based on the “cheese” phantom set-up.

Zusammenfassung

Hintergrund

Die einzigartige Bestrahlungstechnik mit Tomotherapie-Bestrahlungsgeräten (Accuray Inc., Sunnyvale, CA, USA) erfordert spezifische Qualitätssicherungsmethoden. Dies trifft auch für externe Dosimetrievergleiche zu. Es war das Ziel des Dosimetrievergleichs 2014 der SGSMP (Schweizerische Gesellschaft für Strahlenbiologie und Medizinische Physik), Testmethoden mit zwei unterschiedlichen Phantomen zu prüfen.

Material und Methoden

Neben einem kleinen, zylindrischen Plexiglasphantom, das vergleichbar jenem des IROC ist (Imaging and Radiation Oncology Core, Houston, USA), wurde das „Cheese“-Phantom verwendet. Letzteres gehört zur Grundausstattung jedes Tomotherapie-Bestrahlungsgeräts. Es wurden dieselben Standardkalibrierungspläne für die TomoHelical- und TomoDirect-Bestrahlungstechniken abgestrahlt, die auch zur Dosiskalibrierung dienen. Insgesamt wurden 20 in Deutschland und in der Schweiz verwendete Geräte geprüft. Das Verhältnis der gemessenen (Dm) zur berechneten Dosis (Dc) wurde für beide Phantome und Bestrahlungstechniken ermittelt. Die Verteilung der Dm/Dc-Werte diente als Vergleichsmaß für die Eignung des Messaufbaus.

Ergebnisse

Die Standardabweichung der mit TLDs (Thermolumineszenzdosimetrie) gemessenen Dm/Dc-Verhältnisse betrug beim „Cheese“-Phantom 1,9 % für die TomoHelical- (19 Messungen) und 1,2 % für die TomoDirect-Bestrahlungstechnik (11 Messungen). Die Werte des Zylinderphantoms lagen bei 2,8 % (18 Messungen) und 1,8 % (11 Messungen).

Schlussfolgerung

Der auf dem „Cheese“-Phantom basierende Messaufbau und die Verwendung von Kalibrierungsplänen weisen Vorteile gegenüber der Zylinderphantom-basierten Methode auf. Für zukünftige SGSMP-Dosimetrievergleiche von Tomotherapie-Bestrahlungsgeräten wird deshalb das „Cheese“-Phantom verwendet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. AAPM (2004) Quality assurance for clinical trials: a primer for physicists. Report No. 86. Medical Physics Publishing, Madison

  2. Ahnen L, Schiefer H (2013) Results of the TLD intercomparison 2013. SSRPM Bull 78:18–19

    Google Scholar 

  3. Alfonso R, Andreo P, Capote R et al (2008) A new formalism for reference dosimetry of small and nonstandard fields. Med Phys 35:5179–5186

    Article  CAS  PubMed  Google Scholar 

  4. Almond PR, Biggs PJ, Coursey BM et al (1999) AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys 26:1847–1870

    Article  CAS  PubMed  Google Scholar 

  5. Andreo P, Burns DT, Hohlfeld K et al (2000) Absorbed dose determination in external beam radiotherapy. IAEA Technical Report Series No. 398. International Atomic Energy Agency, Vienna

  6. Duane S, Nicholas D, Palmans H et al (2006) SU-FF-T-195: dosimetry audit for tomotherapy using alanine/EPR. Med Phys 33:2093

    Article  Google Scholar 

  7. Fenwick JD, Tomé WA, Jaradat HA et al (2004) Quality assurance of a helical tomotherapy machine. Phys Med Biol 49:2933

    Article  CAS  PubMed  Google Scholar 

  8. Ferreira IH, Dutreix A, Bridier A et al (1999) The ESTRO-QUALity assurance network (EQUAL). Radiother Oncol 55:273–284

    Article  Google Scholar 

  9. Followill D, Molineu A, Lowenstein J et al (2008) SU-GG-T-213: quality audits of the calibration for TG-51 non-compliant beams by the Radiological Physics Center. Med Phys 35:2774

    Article  Google Scholar 

  10. Gago-Arias A, Rodríguez-Romero R, Sánchez-Rubio P et al (2012) Correction factors for A1SL ionization chamber dosimetry in TomoTherapy: machine-specific, plan-class, and clinical fields. Med Phys 39:1964–1970

    Article  CAS  PubMed  Google Scholar 

  11. Geier M, Astner ST, Duma MN et al (2012) Dose-escalated simultaneous integrated-boost treatment of prostate cancer patients via helical tomotherapy. Strahlenther Onkol 188:410–416

    Article  CAS  PubMed  Google Scholar 

  12. IAEA (2000) IAEA TRS 398, Absorbed dose determination in external beam radiotherapy: An international code of practice for dosimetry based on standards of absorbed dose to water. International Atomic Energy Agency, Vienna

  13. Ibbott GS (2010) QA in radiation therapy: the RPC perspective. J Phys Conf Ser 250:012001

    Article  Google Scholar 

  14. Ibbott GS, Followill DS, Molineu HA et al (2008) Challenges in credentialing institutions and participants in advanced technology multi-institutional clinical trials. Int J Radiat Oncol Biol Phys 71:71–75

    Article  Google Scholar 

  15. Langen KM, Papanikolaou N, Balog J et al (2010) QA for helical tomotherapy: report of the AAPM Task Group 148. Med Phys 37:4817–4853

    Article  PubMed  Google Scholar 

  16. Mackie TR (2006) History of tomotherapy. Phys Med Biol 51:R427

    Article  CAS  PubMed  Google Scholar 

  17. Mackie TR, Holmes T, Swerdloff S et al (1993) Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 20:1709–1719

    Article  CAS  PubMed  Google Scholar 

  18. NAR (2008) Dosismessverfahren nach der Sondenmethode für Photonen- und Elektronenstrahlung—Teil 2: Dosimetrie hochenergetischer Photonen- und Elektronenstrahlung mit Ionisationskammern. DIN Norm

  19. Nguyen NP, Krafft SP, Vos P et al (2011) Feasibility of tomotherapy for Graves’ ophthalmopathy: dosimetry comparison with conventional radiotherapy. Strahlenther Onkol 187:568–574

    Article  PubMed  Google Scholar 

  20. Schiefer H, Fogliata A, Nicolini G et al (2010) The Swiss IMRT dosimetry intercomparison using a thorax phantom. Med Phys 37:4424–4431

    Article  CAS  PubMed  Google Scholar 

  21. Sedlmayer F, Sautter-Bihl ML, Budach W et al (2013) Is the simultaneously integrated boost (SIB) technique for early breast cancer ready to be adopted for routine adjuvant radiotherapy? Statement of the German and the Austrian Societies of Radiooncology (DEGRO/OGRO). Strahlenther Onkol 189:193–196

    Article  CAS  PubMed  Google Scholar 

  22. SSRMP (2000) High-Energy Photon Beam Therapy Dosimetry with Ionisation Chambers. SSRMP Recommendations 8

  23. Sterzing F, Welzel T, Sroka-Perez G et al (2009) Reirradiation of multiple brain metastases with helical tomotherapy. A multifocal simultaneous integrated boost for eight or more lesions. Strahlenther Onkol 185:89–93

    Article  PubMed  Google Scholar 

  24. Swinnen A (2005) Quality assurance in radiotherapy: Development and validation of a mailed dosimetry procedure for external audits using a multipurpose phantom and in vivo dosimetry. PhD Thesis, Katholieke Universiteit Leuven, Belgium

  25. Swinnen A, Verstraete J, Huyskens DP (2002) The use of a multipurpose phantom for mailed dosimetry checks of therapeutic photon beams: ‘OPERA’ (operational phantom for external radiotherapy audit). Radiother Oncol 64:317–326

    Article  PubMed  Google Scholar 

  26. Thomas SD, Mackenzie M, Rogers DWO et al (2005) A Monte Carlo derived TG-51 equivalent calibration for helical tomotherapy. Medical Phys 32:1346–1353

    Article  CAS  Google Scholar 

  27. Thomas SJ, Aspradakis MM, Byrne JP et al (2014) Reference dosimetry on TomoTherapy: an addendum to the 1990 UK MV dosimetry code of practice. Phys Med Biol 59:1339–1352

    Article  CAS  PubMed  Google Scholar 

  28. Vallet V, Pisaturo O, Pachoud M et al (2010) 18 Months experience of Filmless patient’s Dqa on Tomotherapy units. Strahlenther Onkol 186:744

    Google Scholar 

Download references

Acknowledgments

Dr. C. Pychlau, PTW Freiburg, and his staff are gratefully acknowledged for performing the irradiation of the reference TLDs. We also thank all participants. The Tomotherapy dose intercomparison presented here is part of cooperation between Accuray and the radiotherapy department of the Cantonal Hospital of St. Gallen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Schiefer PhD.

Ethics declarations

Conflict of interest

H. Schiefer, K. Buchauer, S. Hinze, G. Henke, and L. Plasswilm state that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiefer, H., Buchauer, K., Heinze, S. et al. Design and implementation of a “cheese” phantom-based Tomotherapy TLD dose intercomparison. Strahlenther Onkol 191, 855–861 (2015). https://doi.org/10.1007/s00066-015-0850-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-015-0850-2

Keywords

Schlüsselwörter

Navigation