Skip to main content

Advertisement

Log in

Integrin-based meningioma cell migration is promoted by photon but not by carbon-ion irradiation

Förderung der integrinbasierten Meningeomzellmigration durch Bestrahlung mit Photonen, nicht jedoch durch Bestrahlung mit Kohlenstoffionen

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

Sublethal doses of photon irradiation (IR) are suspected to increase tumor cell migration and support locoregional recurrence of disease, which has already been shown in other cell lines. This manuscript describes the effect of photon and carbon-ion IR on WHO class I meningioma cell migration and provides an approach to the underlying cellular mechanisms.

Materials and methods

Meningioma cells were gained operatively at the university hospital in Homburg/Saar, Germany. For migration, membranes (8-µm pore sizes) were coated with collagen I, with collagen IV, and with fibronectin. Cells were analyzed in migration experiments with or without serum stimulation, with or without photon and carbon IR 24 h prior to experiments, and with or without integrin antibodies. Fluorescence-activated cell sorting (FACS) analyses of the integrins ανβ1, ανβ3, and ανβ5 were performed without IR and 6, 12 and 24 h after IR. Enzyme-linked immunosorbent assay (ELISA) analyses of matrix metalloproteinases (MMP)-2 and MMP-9 were realized with and without IR after cells were cultured on collagen I, collagen IV, or fibronectin for 24 h. Cells and supernatants for FACS and ELISA were stored at − 18 °C. The significance level was set at 5 % using both Student’s t test and two-way ANOVA.

Results

Migration of meningioma cells was serum-inducible (p < 0.001). It could be increased by photon IR (p < 0.02). The integrins ανβ1 and ανβ5 showed a 21 and 11 % higher expression after serum stimulation (not significant), respectively, and ανβ1 expression was raised by 14 % (p = 0.0057) after photon IR. Antibody blockage of the integrins ανβ1 and ανβ5 inhibited serum- and photon-induced migration. Expression of MMP-2 and MMP-9 remained unchanged after both IR and fetal bovine serum (FBS). Carbon-ion IR left both integrin expression and meningioma cell migration unaffected.

Conclusion

Photon but not carbon-ion IR promotes serum-based meningioma cell migration. Fibronectin receptor integrin ανβ1 signaling can be identified as an important mechanism for serum- and photon-induced migration of WHO class I meningioma cells.

Zusammenfassung

Zielsetzung

Subletale Photonendosen werden für die Induktion von Tumorzellmigration und die Förderung regionaler Tumorrekurrenz verantwortlich gemacht. Dies wurde bereits in anderen Zelllinien gezeigt. Dieses Manuskript beschreibt den Effekt von Photonen- und Kohlenstoffionen-Strahlung auf die Migration von Meningeomzellen der WHO-Klasse I und liefert einen Zugang zu den zugrundeliegenden zellulären Mechanismen.

Material und Methoden

Die Meningeomzellen wurden operativ am Universitätsklinikum Homburg/Saar, Deutschland, gewonnen. Für die Migration wurden Membranen (Porendurchmesser 8 µm) mit Kollagen I und IV sowie Fibronektin beschichtet. Das Verhalten der Zellen bei den Transmigrationsversuchen wurde mit oder ohne Serumstimulation, mit oder ohne der Versuchsdurchführung vorausgehende Photonen- oder Kohlenstoffionenbestrahlung und mit oder ohne Integrinantikörpern analysiert. Die Durchflusszytometrie (FACS) der Integrine ανβ1, ανβ3 und ανβ5 wurde ohne Bestrahlung sowie 6 h, 12 h und 24 h nach Bestrahlung durchgeführt. „Enzyme-linked immunosorbent Assays“ (ELISA) der Matrixmetalloproteinasen (MMP) 2 und 9 fanden mit oder ohne Bestrahlung statt, nachdem die Zellen für 24 h auf Kollagen I, IV oder Fibronektin kultiviert worden waren. Zellen und Überstände für FACS und ELISA wurden bei − 18 °C gelagert. Das Signifikanzniveau liegt bei 5%, wobei zur Bestimmung der Studentsche t-Test und die 2-faktorielle Varianzanalyse (2-way ANOVA) verwendet wurden.

Ergebnisse

Die Migration von Meningeomzellen ist seruminduzierbar (p < 0,001). Sie kann durch Photonenbestrahlungen gesteigert werden (p < 0,02). Die Integrine ανβ1 und ανβ5 zeigen nach Serumstimulation eine um 21 und 11 % höhere Expression (nichtsignifikant), die Expression von ανβ1 ist nach Photonenbestrahlung um 14 % (p = 0,0057) gesteigert. Eine Antikörperblockierung der Integrine ανβ1 und ανβ5 hemmt die serum- und photoneninduzierte Migration. Die Expression von MMP-2 und -9 bleibt nach Photonenbestrahlung und nach Serumstimulation (FBS) unverändert. Die Bestrahlung mit Kohlenstoffionen beeinflusst weder die Integrinexpression noch die Migration der Meningeomzellen.

Schlussfolgerung

Die Bestrahlung mit Photonen, nicht jedoch mit Kohlenstoffionen, fördert die serumbasierte Migration von Meningeomzellen. Der Signalweg des Fibronektinrezeptors Integrin ανβ1 kann als wichtiger Mechanismus der serum- und photoneninduzierten Migration von WHO-Klasse-I-Meningeomzellen identifiziert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ibebuike K, Ouma J, Gopal R (2013) Meningiomas among intracranial neoplasms in Johannesburg, South Africa: prevalence, clinical observations and review of the literature. Afr Health Sci 13(1):118–121

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Bondy M, Ligon BL (1996) Epidemiology and etiology of intracranial meningiomas: a review. J Neurooncol 29(3):197–205

    Article  CAS  PubMed  Google Scholar 

  3. Longstreth WT Jr, Dennis LK, McGuire VM, Drangsholt MT, Koepsell TD (1993) Epidemiology of intracranial meningioma. Cancer 72(3):639–648

    Article  PubMed  Google Scholar 

  4. Fathi AR, Roelcke U (2013) Meningioma. Curr Neurol Neurosci Reports 13(4):337

    Article  Google Scholar 

  5. Paulsen F, Zips D (2013) Radiation therapy of meningioma of the anterior visual pathway. Ophthalmologe 110(5):427–432

    Article  CAS  PubMed  Google Scholar 

  6. Walcott BP, Nahed BV, Brastianos PK, Loeffler JS (2013) Radiation treatment for WHO grade II and III meningiomas. Front Oncol 3:227

    Article  PubMed Central  PubMed  Google Scholar 

  7. Béhé M, Kauffmann GW (eds) (2011) Radiologie: bildgebende Verfahren, Strahlentherapie, Nuklearmedizin und Strahlenschutz, 4., völlig überarb. Aufl. edn. Elsevier, Urban & Fischer, München

    Google Scholar 

  8. Herfarth K, Lohr F (eds) (2007) Strahlentherapie kompakt, 2. Aufl. Elsevier, München

  9. Askoxylakis V, Zabel-du Bois A, Schlegel W, Debus J, Huber P, Milker-Zabel S (2010) Patterns of failure after stereotactic radiotherapy of intracranial meningioma. J Neurooncol 98(3):367–372

  10. Milker-Zabel S, Zabel A, Schulz-Ertner D, Schlegel W, Wannenmacher M, Debus J (2005) Fractionated stereotactic radiotherapy in patients with benign or atypical intracranial meningioma: long-term experience and prognostic factors. Int J Radiat Oncol Biol Phys 61:809–816

  11. Combs SE, Welzel T, Habermehl D, Rieken S, Dittmar JO, Kessel K, Jakel O, Haberkorn U, Debus J (2013) Prospective evaluation of early treatment outcome in patients with meningiomas treated with particle therapy based on target volume definition with MRI and 68Ga-DOTATOC-PET. Acta Oncol 52:514–520

  12. Combs SE, Kessel K, Habermehl D, Haberer T, Jakel O, Debus J (2013) Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base. Acta Oncol 52:1504–1509

  13. Buetow MP, Buetow PC, Smirniotopoulos JG (1991) Typical, atypical, and misleading features in meningioma. Radiographics 11(6):1087–1106

    Article  CAS  PubMed  Google Scholar 

  14. Wilms G, Lammens M, Marchal G, Van Calenbergh F, Plets C, Van Fraeyenhoven L, Baert AL (1989) Thickening of dura surrounding meningiomas: MR features. J Comput Assist Tomog 13(5):763–768

    Article  CAS  Google Scholar 

  15. Goldsher D, Litt AW, Pinto RS, Bannon KR, Kricheff, II (1990) Dural “tail” associated with meningiomas on Gd-DTPA-enhanced MR images: characteristics, differential diagnostic value, and possible implications for treatment. Radiology 176(2):447–450

    Article  CAS  PubMed  Google Scholar 

  16. Asari S, Yabuno N, Ohmoto T (1994) Magnetic resonance characteristics of meningiomas arising from the falcotentorial junction. Comput Med Imaging Graph 18(3):181–185

    Article  CAS  PubMed  Google Scholar 

  17. Sekiya T, Manabe H, Iwabuchi T, Narita T (1992) The dura mater adjacent to the attachment of meningiomas: its enhanced MR imaging and histological findings. No Shinkei Geka 20(10):1063–1068

    CAS  PubMed  Google Scholar 

  18. Rieken S, Habermehl D, Mohr A, Wuerth L, Lindel K, Weber K, Debus J, Combs SE (2011) Targeting alphanubeta3 and alphanubeta5 inhibits photon-induced hypermigration of malignant glioma cells. Radiat Oncol 6:132

  19. Ogata T, Teshima T, Kagawa K, Hishikawa Y, Takahashi Y, Kawaguchi A, Suzumoto Y, Nojima K, Furusawa Y, Matsuura N (2005) Particle irradiation suppresses metastatic potential of cancer cells. Cancer Res 65(1):113–120

    CAS  PubMed  Google Scholar 

  20. Jiang GL (2012) Particle therapy for cancers: a new weapon in radiation therapy. Front Med 6(2):165–172

    Article  PubMed  Google Scholar 

  21. Altinors N, Caner H, Bavbek M, Erdogan B, Atalay B, Calisaneller T, Cekinmez M (2004) Problems in the management of intracranial meningiomas. J Invest Surg 17(5):283–289

    Article  PubMed  Google Scholar 

  22. Caffo M, Caruso G, Galatioto S, Meli F, Cacciola F, Germano A, Alafaci C, Tomasello F (2008) Immunohistochemical study of the extracellular matrix proteins laminin, fibronectin and type IV collagen in secretory meningiomas. J Clin Neurosci 15(7):806–811

    Article  CAS  PubMed  Google Scholar 

  23. Rooprai HK, Liyanage K, Robinson SF, Kandanearatchi A, Dean AF, Pilkington GJ (1999) Extracellular matrix-modulated differential invasion of human meningioma cell lines in vitro. Neurosci Lett 263(2–3):214–216

    Article  CAS  PubMed  Google Scholar 

  24. Haberer T, Becher W, Schardt D, Kraft G (1993) Magnetic scanning system for heavy ion therapy. Nuclear Instrum Methods Phys Res A 330(1):296–305

    Article  Google Scholar 

  25. Combs SE, Bohl J, Elsasser T, Weber KJ, Schulz-Ertner D, Debus J, Weyrather WK (2009) Radiobiological evaluation and correlation with the local effect model (LEM) of carbon ion radiation therapy and temozolomide in glioblastoma cell lines. Int J Radiat Biol 85:126–137

  26. Combs SE, Zipp L, Rieken S, Habermehl D, Brons S, Winter M, Haberer T, Debus J, Weber KJ (2012) In vitro evaluation of photon and carbon ion radiotherapy in combination with chemotherapy in glioblastoma cells. Radiat Oncol 7:9

  27. Iwadate Y, Mizoe J, Osaka Y, Yamaura A, Tsujii H (2001) High linear energy transfer carbon radiation effectively kills cultured glioma cells with either mutant or wild-type p53. Int J Radiat Oncol Biol Phys 50(3):803–808

    Article  CAS  PubMed  Google Scholar 

  28. Syeda T, Muhammad Hashim AS, Rizvi HA, Hadi SM (2013) Serum S100B in patients with brain tumours undergoing craniotomy. J Coll Physicians Surg Pak 23(2):112–115

    PubMed  Google Scholar 

  29. Rieken S, Habermehl D, Wuerth L, Brons S, Mohr A, Lindel K, Weber K, Haberer T, Debus J, Combs SE (2012) Carbon ion irradiation inhibits glioma cell migration through downregulation of integrin expression. Int J Radiat Oncol Biol Phys 83:394–399

  30. Rieken S, Simon F, Habermehl D, Dittmar JO, Combs SE, Weber K, Debus J, Lindel K (2014) Photon-induced cell migration and integrin expression promoted by DNA integration of HPV16 genome. Strahlenther Onkol 190:944–949

  31. Montagnani S, Castaldo C, Di Meglio F, Sciorio S, Giordano-Lanza G (2000) Extra cellular matrix features in human meninges. Ital J Anat Embryol 105(3):167–177

    CAS  PubMed  Google Scholar 

  32. Chernov MF, Ono Y, Abe K, Usukura M, Hayashi M, Izawa M, Diment SV, Ivanov PI, Muragaki Y, Iseki H et al (2013) Differentiation of tumor progression and radiation-induced effects after intracranial radiosurgery. Acta Neurochir Suppl 116:193–210

    PubMed  Google Scholar 

  33. Stahler C, Roth J, Cordes N, Taucher-Scholz G, Mueller-Klieser W (2013) Impact of carbon ion irradiation on epidermal growth factor receptor signaling and glioma cell migration in comparison to conventional photon irradiation. Int J Radiat Biol 89(6):454–461

    Article  CAS  PubMed  Google Scholar 

  34. Kwon MJ, Sung CO, Kang SY, Do IG, Suh YL (2013) Differential expression of extracellular matrix-related genes in rare variants of meningioma. Hum Pathol 44(2):260–268

    Article  CAS  PubMed  Google Scholar 

  35. Barresi V, Vitarelli E, Tuccari G, Barresi G (2011) MMP -9 expression in meningiomas: a prognostic marker for recurrence risk? J Neurooncol 102(2):189–196

    Article  CAS  PubMed  Google Scholar 

  36. A DIC (2013) Evaluation of neutrophil gelatinase-associated lipocalin (NGAL), matrix metalloproteinase -9 (MMP -9) and their complex MMP -9/NGAL in sera and urine of patients with kidney tumors. Oncol Lett 5(5):1677–1681

    Google Scholar 

  37. Asuthkar S, Velpula KK, Nalla AK, Gogineni VR, Gondi CS, Rao JS (2013) Irradiation-induced angiogenesis is associated with an MMP -9-miR -494-syndecan -1 regulatory loop in medulloblastoma cells. Oncogene

  38. Akino Y, Teshima T, Kihara A, Kodera-Suzumoto Y, Inaoka M, Higashiyama S, Furusawa Y, Matsuura N (2009) Carbon-ion beam irradiation effectively suppresses migration and invasion of human non-small-cell lung cancer cells. Int J Radiat Oncol Biol Phys 75(2):475–481

    Article  CAS  PubMed  Google Scholar 

  39. Su WH, Chuang PC, Huang EY, Yang KD (2012) Radiation-induced increase in cell migration and metastatic potential of cervical cancer cells operates via the K-Ras pathway. Am J Pathol 180(2):862–871

    Article  CAS  PubMed  Google Scholar 

  40. Combs SE, Edler L, Burkholder I, Rieken S, Habermehl D, Jakel O, Haberer T, Unterberg A, Wick W, Debus J et al (2010) Treatment of patients with atypical meningiomas Simpson grade 4 and 5 with a carbon ion boost in combination with postoperative photon radiotherapy: the MARCIE trial. BMC Cancer 10:615

Download references

Acknowledgments

We would like to thank Mrs. Sonja Hoffmann for the primary culturing of the meningioma cell lines at the University Hospital Homburg/Saar (Germany) and organizing their transport to Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Simon.

Ethics declarations

Conflict of interest

F. Simon, J-O. Dittmar, S. Brons, L. Orschiedt, S. Urbschat, K-J. Weber, J. Debus, S.E. Combs, and S. Rieken state that there are no conflicts of interest.

Additional information

Stephanie E. Combs and Stefan Rieken shared senior authorship.

This work was presented in part at the Annual Meeting of the German Society of Radiation Oncology (DEGRO) in Berlin, Germany in May 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, F., Dittmar, JO., Brons, S. et al. Integrin-based meningioma cell migration is promoted by photon but not by carbon-ion irradiation. Strahlenther Onkol 191, 347–355 (2015). https://doi.org/10.1007/s00066-014-0778-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-014-0778-y

Keywords

Schlüsselwörter

Navigation