Skip to main content
Log in

Improved cone-beam computed tomography in supine and prone breast radiotherapy

Surface reconstruction, radiation exposure, and clinical workflow

Verbesserte Cone-beam-Computertomographie für die Radiotherapie der Brust in Rücken- und Bauchlage

Oberflächenrekonstruktion, Strahlenbelastung und klinische Durchführung

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

Cone-beam computerized tomography (CBCT) enables three-dimensional information of the scanned region and provides soft tissue images with good spatial resolution. Our aim was to optimize image acquisition settings for prone and supine breast radiotherapy with respect to contour accuracy, clinical practicalities, and radiation dose.

Patients and methods

CBCT images were acquired for both prone and supine anthropomorphic phantoms and a female cadaver in supine and prone set-up. CBCT protocols were investigated by altering the tube current, exposure time, range of projection views, field of view (FOV), and starting angle. For clinical practicalities, the frequency of the use of an offset CBCT isocenter was evaluated at 558 205°-CBCTs (37 patients; 13 prone and 24 supine) and 1272 360°-CBCTs (102 patients; 13 prone and 89 supine).

Results

Prone and supine breast CBCT images acquired with a bowtie filter, a small FOV, a range of projection views equaling 180°, a tube current of 20 mA and an exposure time of 32 ms, demonstrated adequate contour accuracy and an elimination of the offset CBCT isocenter procedure, while this occurred in 40.7 % for the old full-rotation protocol. Furthermore a 4.3-fold dose reduction was observed for the Computed Tomography Dose Index (CTDIw) compared to the preset Chest M20 protocol.

Conclusion

The established 180° protocol demonstrated acceptable contour accuracy, eliminated the CBCT isocenter offset procedure and reduced patient radiation exposure.

Zusammenfassung

Hintergrund und Zielsetzung

Die Cone-beam-Computertomographie (CBCT) ermöglicht 3-dimensionale Informationen der gescannten Region und CT-Bilder von Weichteilgewebe in guter räumlicher Auflösung. Unsere Zielsetzung war die Optimierung der Bildakquise für die Einstellungen bei Brustbestrahlungen in Bauch- und Rückenlage in Bezug auf Kontrast, Praktikabilität und Strahlendosis.

Patienten und Methodik

CBCT-Bilder wurden mit einem anthropomorphen Phantom und an einer weiblichen Leiche in Rücken- und Bauchlage aufgenommen. Verschiedene CBCT-Protokolle mit unterschiedlichem Röhrenstrom, unterschiedlichen Expositionszeiten, Projektionsbereichen, Bildausschnitten (FOV) und Anfangswinkeln wurden untersucht. Für die klinische Praxis wurde die Häufigkeit von erforderlichen CBCT-Isozentrum-Anpassungen anhand von 558 205°-CBCT (37 Patienten; 13 in Bauchlage, 24 in Rückenlage) und 1272 360°-CBCT (102 Patienten; 13 in Bauchlage, 89 in Rückenlage) überprüft.

Ergebnisse

Die mit einem Bowtie-Filter, kleinem FOV, einer 180°-Rotation, 20 mA Röhrenstrom und einer Belichtungszeit von 32 ms erhaltenen CBCT-Bilder in Bauch- und Rückenlage gewährleisteten eine adäquate Konturgenauigkeit und vermeiden eine CBCT in Isozentrumsposition, die bei 40,7 % in den alten Vollrotationsprotokollen erforderlich war. Weiterhin ergab sich eine 4,3-fache Reduktion des Computered-Tomography-Dose-Index (CTDIw) verglichen mit dem Chest-M20-Standard-Protokoll.

Schlussfolgerungen

Das 180°-Protokoll zeigt eine akzeptable Konturierungsgenauigkeit, vermeidet CBCT in Isozentrum-Position und reduziert die Strahlenbelastung für die Patientin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Jozsef G, DeWyngaert JK, Becker SJ et al (2011) Prospective study of cone-beam computed tomography image-guided radiotherapy for prone accelerated partial breast irradiation. Int J Radiat Oncol Biol Phys 81:568–574

    Article  PubMed  Google Scholar 

  2. Fatunase T, Wang Z, Yoo S et al (2008) Assessment of the residual error in soft tissue setup in patients undergoing partial breast irradiation: results of a prospective study using cone-beam computed tomography. Int J Radiat Oncol Biol Phys 70:1025–1034

    Article  PubMed  Google Scholar 

  3. Boda-Heggemann J, Lohr F, Wenz F et al (2011) kV cone-beam CT-based IGRT a clinical review. Strahlenther Onkol 187:284–291

    Article  PubMed  Google Scholar 

  4. Guckenberger M, Ok S, Polat B et al (2010) Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer. Strahlenther Onkol 186:535–543

    Article  PubMed  Google Scholar 

  5. Guckenberger M, Meyer J, Wilbert J et al (2007) Precision of image-guided radiotherapy (IGRT) in six degrees of freedom and limitations in clinical practice. Strahlenther Onkol 183:307–313

    Article  PubMed  Google Scholar 

  6. Polat B, Wilbert J, Baier K et al (2007) Nonrigid patient setup errors in the head-and-neck region. Strahlenther Onkol 183:506–511

    Article  PubMed  Google Scholar 

  7. Topolnjak R, Sonke JJ, Nijkamp J et al (2010) Breast patient setup error assessment: comparison of electronic portal image devices and cone-beam computed tomography matching results. Int J Radiat Oncol Biol Phys 78:1235–1243

    Article  PubMed  Google Scholar 

  8. Stock M, Pasler M, Birkfellner W et al (2009) Image quality and stability of image-guided radiotherapy (IGRT) devices: A comparative study. Radiother Oncol 93:1–7

    Article  PubMed  Google Scholar 

  9. Oldham M, Letourneau D, Watt L et al (2005) Cone-beam-CT guided radiation therapy: a model for on-line application. Radiother Oncol 75:271–278

    Article  PubMed  Google Scholar 

  10. Smitsmans MH, Bois J de, Sonke JJ et al (2005) Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy. Int J Radiat Oncol Biol Phys 63:975–984

    Article  PubMed  Google Scholar 

  11. Kan MW, Leung LH, Wong W, Lam N (2008) Radiation dose from cone beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 70:272–279

    Article  PubMed  CAS  Google Scholar 

  12. De Puysseleyr A, Veldeman L, Bogaert E et al (2011) Optimizing image acquisition settings for cone-beam computed tomography in supine and prone breast radiotherapy. Radiother Oncol 100:227–230

    Article  Google Scholar 

  13. Mail N, Moseley DJ, Siewerdsen JH, Jaffray DA (2009) The influence of bowtie filtration on cone-beam CT image quality. Med Phys 36:22–32

    Article  PubMed  CAS  Google Scholar 

  14. Islam MK, Purdie TG, Norrlinger BD et al (2006) Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy. Med Phys 33:1573–1582

    Article  PubMed  Google Scholar 

  15. De Crop A, Bacher K, Van Hoof T et al (2012) Correlation of contrast-detail analysis and clinical image quality assessment in chest radiography with a human cadaver study. Radiology 262:298–304

    Article  Google Scholar 

  16. Thiel W (1992) The preservation of complete cadavers without loss of natural color. Ann Anat 174:185–195

    Article  PubMed  CAS  Google Scholar 

  17. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1:612–619

    Article  Google Scholar 

  18. EU (1999) European Guidelines on Quality Criteria for Computed Tomography Brussels: EU Report No.: EUR 16262

  19. Amer A, Marchant T, Sykes J et al (2007) Imaging doses from the Elekta Synergy X-ray cone beam CT system. Brit J Radiol 80:476–482

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Action 29, project 015 of the National Cancer Plan, an initiative of Minister Laurette Onkelinx. Annemieke De Puysseleyr is a fellow of the Foundation of Scientific Research (FWO). The authors would like to thank Klaus Bacher, Ph.D., and Liesbeth Eloot, M.Sc., from the Department of Medical Physics and Radiation Protection at Ghent University for providing the tools and assistance for the CTDI measurements.

Compliance with ethical guidelines

Conflict of interest. A. De Puysseleyr, T. Mulliez, A. Gulyban, E. Bogaert, T. Vercauteren, T. Van Hoof, J. Van de Velde, R. Van Den Broecke, C. De Wagter and W. De Neve state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mulliez M.D..

Additional information

The first two authors contributed equally to the design and writing of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Puysseleyr, A., Mulliez, T., Gulyban, A. et al. Improved cone-beam computed tomography in supine and prone breast radiotherapy. Strahlenther Onkol 189, 945–950 (2013). https://doi.org/10.1007/s00066-013-0435-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-013-0435-x

Keywords

Schlüsselwörter

Navigation