Skip to main content
Log in

Quasi-VMAT in high-grade glioma radiation therapy

Bestrahlung höhergradiger Gliome mit der Quasi-VMAT-Methode

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

To compare a quasi-volumetric modulated arc therapy (qVMAT) with three-dimensional conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT) for the treatment of high-grade gliomas. The qVMAT technique is a fast method of radiation therapy in which multiple equispaced beams analogous to those in rotation therapy are radiated in succession.

Patients and methods

This study included 12 patients with a planning target volume (PTV) that overlapped at least one organ at risk (OAR). 3D-CRT was planned using 2–3 non-coplanar beams, whereby the field-in-field technique (FIF) was used to divide each field into 1–3 subfields to shield the OAR. The qVMAT strategy was planned with 15 equispaced beams and IMRT was planned using 9 beams with a total of 80 segments. Inverse planning for qVMAT and IMRT was performed by direct machine parameter optimization (DMPO) to deliver a homogenous dose distribution of 60 Gy within the PTV and simultaneously limit the dose received by the OARs to the recommended values. Finally, the effect of introducing a maximum dose objective (max. dose < 54 Gy) for a virtual OAR in the form of a 0.5 cm ring around the PTV was investigated.

Results

The qVMAT method gave rise to significantly improved PTV95% and conformity index (CI) values in comparison to 3D-CRT (PTV95% = 90.7 % vs. 82.0 %; CI = 0.79 vs. 0.74, respectively). A further improvement was achieved by IMRT (PTV95% = 94.4 %, CI = 0.78). In qVMAT and IMRT, the addition of a 0.5 cm ring around the PTV produced a significant increase in CI (0.87 and 0.88, respectively), but dosage homogeneity within the PTV was considerably reduced (PTV95% = 88.5 % and 92.3 %, respectively). The time required for qVMAT dose delivery was similar to that required using 3D-CRT.

Conclusion

These findings suggest that qVMAT should be preferred to 3D-CRT for the treatment of high-grade gliomas. The qVMAT method could be applied in hospitals, for example, which have limited departmental resources and are not equipped with systems capable of VMAT delivery.

Zusammenfassung

Ziel

Ziel war es, eine sog. quasi volumetrisch modulierte Rotationsbestrahlung (qVMAT) mit einer konformalen 3-D-Bestrahlung (3D-CRT) und einer intensitätsmodulierten Bestrahlung (IMRT) bei der Behandlung von massiven Gliomen zu vergleichen. Die qVMAT ist eine schnelle Bestrahlungstechnik, bei der viele äquidistante Stehfelder analog einer Rotationsbestrahlung nacheinander bestrahlt werden.

Patienten und Methoden

In die Studie waren 12 Patienten eingeschlossen, bei denen das Planungszielvolumen (PTV) mindestens in einem Risikoorgan (OAR) teilweise enthalten war. Die 3D-CRT-Bestrahlungsplanung erfolgte über 2–3 nichtkoplanare Felder, wobei zur Schonung des Risikoorgans bei jedem Feld eine Feld-in-Feld-Technik mit 1–3 Subfeldern angewendet wurde. Die qVMAT wurde mit 15 äquidistanten Feldern realisiert, die IMRT mit 9 Feldern mit insgesamt 80 Segmenten. Um eine homogene Dosisverteilung im PTV von 60 Gy bei gleichzeitiger Schonung des Risikoorgans zu erreichen, wurde die Bestrahlungsplanung für die Techniken qVMAT und IMRT mit der „direct machine parameter optimization“ (DMPO) durchgeführt. Zusätzlich wurde die Auswirkung eines „maximum constraint“ (< 54 Gy) für ein virtuelles Risikoorgan (0,5-cm-Schalenstruktur um das PTV) auf die Planqualität untersucht.

Ergebnisse

Im Vergleich zur 3D-CRT-Methode ergab sich für die qVMAT eine signifikante Verbesserung der PTV95% (90,7 % vs. 82,0 %) und des Conformity-Indexes (CI; 0,79 vs. 0,74). Eine weitere Verbesserung wurde durch die IMRT erreicht (PTV95 %: 94,4 %; CI: 0,78). Wird bei der Planung ein virtuelles Risikoorgan in Form einer 0,5 cm dicken Schale um das PTV berücksichtigt, wird zwar der CI bei qVMAT und IMRT signifikant verbessert (0,87 bzw. 0,88), allerdings nimmt die Dosishomogenität im Zielvolumen deutlich ab (PTV95%: 88,5 % bzw. 92,3 %). Die Bestrahlungszeiten bei Anwendung der qVMAT sind mit denen der 3D-CRT vergleichbar.

Schlussfolgerung

Die Ergebnisse lassen darauf schließen, dass die qVMAT in der Behandlung massiver Gliome gegenüber der 3D-CRT zu bevorzugen ist. Die qVMAT kann beispielsweise in Krankenhäusern eingesetzt werden, die nur über begrenzte Mittel verfügen und nicht mit VMAT-fähigen Systemen ausgestattet sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Guckenberger M, Mayer M, Buttmann M et al (2011) Prolonged survival when temozolomide is added to accelerated radiotherapy for glioblastoma multiforme. Strahlenther Onkol 187(9):548–554

    Article  PubMed  Google Scholar 

  2. Amelio D, Lorentini S, Schwarz M, Amichetti M (2010) Intensity-modulated radiation therapy in newly diagnosed glioblastoma: a systematic review on clinical and technical issues. Radiother Oncol 97(3):361–369

    Article  PubMed  Google Scholar 

  3. Narayana A, Yamada J, Berry S et al (2006) Intensity-modulated radiotherapy in high-grade gliomas: clinical and dosimetric results. Int J Radiat Oncol Biol Phys 64(3):892–897

    Article  PubMed  Google Scholar 

  4. Galvin JM, Ezzell G, Eisbrauch A et al (2004) Implementing IMRT in clinical practice: a joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine. Int J Radiat Oncol Biol Phys 58(5):1616–1634

    Article  PubMed  Google Scholar 

  5. Yu CX, Tang G (2011) Intensity-modulated arc therapy: principles, technologies and clinical implementation. Phys Med Biol 56(5):R31–R54

    Article  PubMed  Google Scholar 

  6. Wiehle R, Knippen S, Grosu AL et al (2011) VMAT and step-and-shoot IMRT in head and neck cancer: a comparative plan analysis. Strahlenther Onkol 187(12):820–825

    Article  PubMed  Google Scholar 

  7. Pasler M, Georg D, Wirtz H, Lutterbach J (2011) Effect of photon-beam energy on VMAT and IMRT treatment plan quality and dosimetric accuracy for advanced prostate cancer. Strahlenther Onkol 187(12):792–798

    Article  PubMed  Google Scholar 

  8. Stieler F, Wolff D, Bauer L et al (2011) Reirradiation of spinal column metastases: comparison of several treatment techniques and dosimetric validation for the use of VMAT. Strahlenther Onkol 187(7):406–415

    Article  PubMed  Google Scholar 

  9. Shaffer R, Nichol AM, Vollans E et al (2010) A comparison of volumetric modulated arc therapy and conventional intensity-modulated radiotherapy for frontal and temporal high-grade gliomas. Int J Radiat Oncol Biol Phys 76(4):1177–1184

    Article  PubMed  Google Scholar 

  10. Wagner D, Christiansen H, Wolff H, Vorwerk H (2009) Radiotherapy of malignant gliomas: comparison of volumetric single arc technique (RapidArc), dynamic intensity-modulated technique and 3D conformal technique. Radiother Oncol 93(3):593–596

    Article  PubMed  Google Scholar 

  11. Bratengeier K, Gainey MB, Flentje M (2011) Fast IMRT by increasing the beam number and reducing the number of segments. Radiat Oncol 6:170

    Article  PubMed  Google Scholar 

  12. Alvarez Moret J, Kölbl O, Bogner L (2009) Quasi-IMAT study with conventional equipment to show high plan quality with a single gantry arc. Strahlenther Onkol 185(1):41–48

    Article  Google Scholar 

  13. Alvarez Moret J, Koelbl O, Bogner L (2009) Quasi-IMAT technique and secondary cancer risk in prostate cancer. Strahlenther Onkol 185(4):248–253

    Article  Google Scholar 

  14. Chan MF, Schupak K, Burman C et al (2003) Comparison of intensity-modulated radiotherapy with three-dimensional conformal radiation therapy planning for glioblastoma multiforme. Med Dosim 28(4):261–265

    Article  PubMed  Google Scholar 

  15. Jiang Z, Earl MA, Zhang GW et al (2005) An examination of the number of required apertures for step-and-shoot IMRT. Phys Med Biol 50(23):5653–5663

    Article  PubMed  CAS  Google Scholar 

  16. Tanaka M, Ino Y, Nakagawa K et al (2005) High-dose conformal radiotherapy for supratentorial malignant glioma: a historical comparison. Lancet Oncol 6(12):953–960

    Article  PubMed  Google Scholar 

  17. Cardinale R, Won M, Choucair A et al (2006) A phase II trial of accelerated radiotherapy using weekly stereotactic conformal boost for supratentorial glioblastoma multiforme: RTOG 0023. Int J Radiat Oncol Biol Phys 65(5):1422–1428

    Article  PubMed  Google Scholar 

  18. Piroth MD, Pinkawa M, Holy R et al (2012) Integrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas. Results of a prospective phase II study. Strahlenther Onkol 188(4):334–339

    Article  PubMed  CAS  Google Scholar 

  19. MacDonald SM, Ahmad S, Kachris S et al (2007) Intensity modulated radiation therapy versus three-dimensional conformal radiation therapy for the treatment of high grade glioma: a dosimetric comparison. J Appl Clin Med Phys 8(2):47–60

    PubMed  Google Scholar 

  20. Gondi V, Tomé WA, Mehta MP (2010) Why avoid the hippocampus? A comprehensive review. Radiother Oncol 97(3):370–376

    Article  PubMed  Google Scholar 

  21. Hermanto U, Frija EK, Lii MJ et al (2007) Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: does IMRT increase the integral dose to normal brain? Int J Radiat Oncol Biol Phys 67(4):1135–1144

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Farace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadda, G., Massazza, G., Zucca, S. et al. Quasi-VMAT in high-grade glioma radiation therapy. Strahlenther Onkol 189, 367–371 (2013). https://doi.org/10.1007/s00066-012-0296-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0296-8

Keywords

Schlüsselwörter

Navigation