Skip to main content
Log in

Impact of learning curve and technical changes on dosimetry in low-dose brachytherapy for prostate cancer

Bedeutung der Lernkurve und technischer Veränderungen für die Dosimetrie bei der Low-Dose-Brachytherapie des Prostatakarzinoms

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

To assess the impact of experience and technical changes on peri- and postimplantation (1 month later) dosimetry for permanent prostate brachytherapy (PPB).

Patients and methods

From July 2003 to May 2010, 150 prostate cancer patients underwent low-dose, loose-seed I125 PPB as monotherapy with intraoperative planning. Patients were divided into three groups—P1 (n= 64), P2 (n = 45), P3 (n = 41)—according to the technical changes that occurred during the study period: use of an automatic stepper at the beginning of P2 and a high-frequency ultrasound probe in P3. Peri- and postimplantation dosimetric parameters (on day 30) were reported: D90 (dose received by 90% of prostate volume), V100 and V150 (prostate volume receiving, respectively, 100% and 150% of the prescribed dose), D2 cc and D0.1 cc (doses received by 2 cc and 0.1 cc of the rectum), R100 (rectum volume that received 100% of the prescribed dose), and D10 and D30 (doses received by 10% and 30% of the urethra, only during peri-implantation).

Results

We observed a decrease in the number of needles and seeds used over time. The mean peri-implantation D90 was 187.52 Gy without a significant difference between the three periods (p = 0.48). The postimplantation D90, V100, and V150 parameters were, respectively, 168.3 Gy, 91.9%, and 55% with no significant difference between the three periods. The peri-implantation and postimplantation D0.1 cc and R100 significantly decreased over time; on day 30: D0.1 cc P1 = 223.1 Gy vs. D0.1 cc P3 = 190.4 Gy (p = 8.10− 5) and R100 P1 = 1.06 cc vs. R100 P3 = 0.53 cc (p = 0.0008).

Conclusion

We observed a learning curve for the implantation parameters, which led to a significant decrease in the rectal doses without having any impact on the prostate dosimetric parameters.

Zusammenfassung

Ziel

Ziel war es, den Einfluss von Erfahrung und technischen Änderungen der Dosimetrie bei und nach Implantation einer Prostatabrachytherapie abzuschätzen.

Patienten und Methoden

Es wurden 150 Patienten mit Low-Dose-Rate-Brachytherapie der Prostata behandelt. Die Patienten wurden hisichtlich der technischen Veränderungen in 3 Perioden aufgeteilt (P1, P2, P3): Gebrauch eines automatischen „Steppers“ zu Beginn von P2 und Gebrauch einer Hochfrequenzsonde seit P3. Peri- und Postimplantationsdosimetriekriterien von Prostata, Rektum und Urethra wurden registriert: D90 (Dosis, die 90% der Prostata erhalten haben), V100 und V150 (Prostatavolumen, das 100% bzw. 150% der verordneten Dosis erhalten hat), D2 cm3 und D0,1 cm3 (Dosis pro 2 cm3 und 0,1 cm3 des Rektums), R100 (Rektalvolumen, das 100% der verordneten Dosis erhalten hat) und D10 und D30 (Dosis, die 10% bzw. 30% der Urethra erhalten haben, nur bei Implantation).

Ergebnisse

D90 bei Implantation betrug 187,52 Gy ohne signifikanten Unterschied in den 3 Perioden (p = 0,48). Die D0,1 cm3 und R100 bei und nach Implantation verringerten sich mit der Zeit signifikant von 170,5 Gy in P1 zu 147,7 Gy in P3 (p = 1,10− 5) und von 0,29 cm3 in P1 zu 0,05 cm3 in P3 (p = 4,10− 5). Die Werte für D90, V100 und V150 nach einem Monat betrugen 168,3 Gy, 91,9% und 55% ohne einen signifikanten Unterschied zwischen den 3 Perioden. Nach Implantation sank die rektale Dosis signifikant (D2 cm3 P1 = 129,8 Gy vs. D2 cm3 P3 = 113,5 Gy (p = 0,06), D0,1 cm3 P1 = 223,1 Gy vs. D0,1 cm3 P3 = 190,4 Gy (p = 8,10− 5), R100 P1 = 1,06 cm3 vs. R100 P3 = 0,53 cm3 (p = 0,0008).

Fazit

Wir konnten keine positive Lernkurve für D90 bei und nach Implantation beobachten. Allerdings stellten wir eine signifikante Verringerung der rektalen Dosis mit wachsender Erfahrung fest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. D’Amico AV, Whittington R, Malkowicz SB et al (1998) Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280:969–974

    Article  Google Scholar 

  2. Goldner G, Potter R, Battermann JJ et al (2012) Comparison of seed brachytherapy or external beam radiotherapy (70 Gy or 74 Gy) in 919 low-risk prostate cancer patients. Strahlenther Onkol 188:305–310

    Article  PubMed  CAS  Google Scholar 

  3. Potters L, Klein EA, Kattan MW et al (2004) Monotherapy for stage T1-T2 prostate cancer: radical prostatectomy, external beam radiotherapy, or permanent seed implantation. Radiother Oncol 71:29–33

    Article  PubMed  Google Scholar 

  4. Buron C, Le Vu B, Cosset JM et al (2007) Brachytherapy versus prostatectomy in localized prostate cancer: results of a French multicenter prospective medico-economic study. Int J Radiat Oncol Biol Phys 67:812–822

    Article  PubMed  Google Scholar 

  5. Pinkawa M, Fischedick K, Piroth MD et al (2006) Health-related quality of life after permanent interstitial brachytherapy for prostate cancer: correlation with postimplant CT scan parameters. Strahlenther Onkol 182:660–665

    Article  PubMed  Google Scholar 

  6. Schafer JW, Welzel G, Trojan L et al (2008) Long-term health-related quality-of-life outcomes after permanent prostate brachytherapy. Onkologie 31:599–603

    Article  PubMed  Google Scholar 

  7. Ferlay J, Parkin DM, Steliarova-Foucher E (2010) Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 46:765–781

    Article  PubMed  CAS  Google Scholar 

  8. Boyle P, Ferlay J (2005) Cancer incidence and mortality in Europe, 2004. Ann Oncol 16:481–488

    Article  PubMed  CAS  Google Scholar 

  9. McVey GP, McPhail S, Fowler S et al (2010) Initial management of low-risk localized prostate cancer in the UK: analysis of the British Association of Urological Surgeons Cancer Registry. BJU Int 106:1161–1164

    Article  PubMed  Google Scholar 

  10. Guedea F, Hoskin P, Mazeron JJ et al (2009) Brachytherapy in the United Kingdom and Spain: a subset analysis of a European pattern of care survey. Clin Transl Oncol 11:534–538

    Article  PubMed  Google Scholar 

  11. Guedea F, Venselaar J, Hoskin P et al (2010) Patterns of care for brachytherapy in Europe: updated results. Radiother Oncol 97:514–520

    Article  PubMed  Google Scholar 

  12. Poortmans PM, Aarts MJ, Jobsen JJ et al (2011) A population-based study on the utilisation rate of primary radiotherapy for prostate cancer in 4 regions in the Netherlands, 1997–2008. Radiother Oncol 99:207–213

    Article  PubMed  CAS  Google Scholar 

  13. Stubinger SH, Wilhelm R, Kaufmann S et al (2008) Brachytherapy of the prostate cancer. Urologe A 47:284–290

    Article  PubMed  CAS  Google Scholar 

  14. Kaulich TW, Bamberg M (2010) Radiation protection of persons living close to patients with radioactive implants. Strahlenther Onkol 186:107–112

    Article  PubMed  Google Scholar 

  15. Goldner G, Sljivic S, Oismueller R et al (2011) Prostate cancer radiotherapy in Austria: overview on number of patients, intention to treat, and treatment techniques based on data from 2007. Strahlenther Onkol 187:279–283

    Article  PubMed  Google Scholar 

  16. Acher P, Popert R, Nichol J et al (2006) Permanent prostate brachytherapy: dosimetric results and analysis of a learning curve with a dynamic dose-feedback technique. Int J Radiat Oncol Biol Phys 65:694–698

    Article  PubMed  Google Scholar 

  17. Bladou F, Salem N, Simonian-Sauve M et al (2004) Permanent iodine 125 implant brachytherapy in localized prostate cancer: results of the first 4 years of experience. Prog Urol 14:345–352

    PubMed  Google Scholar 

  18. Hoinkis C, Hakenberg OW, Lehmann D et al (2004) Evaluation of dose-volume histograms after prostate seed implantation. 4-year experience. Strahlenther Onkol 180:550–556

    Article  PubMed  Google Scholar 

  19. Salem N, Simonian-Sauve M, Rosello R et al (2003) Predictive factors of acute urinary morbidity after iodine-125 brachytherapy for localised prostate cancer: a phase 2 study. Radiother Oncol 66:159–165

    Article  PubMed  Google Scholar 

  20. Schiefer H, Toggenburg F von, Seelentag W et al (2009) Exposure of treating physician to radiation during prostate brachytherapy using iodine-125 seeds: dose measurements on both hands with thermoluminescence dosimeters. Strahlenther Onkol 185:689–695

    Article  PubMed  Google Scholar 

  21. Wust P, Postrach J, Kahmann F et al (2008) Postimplantation analysis enables improvement of dose-volume histograms and reduction of toxicity for permanent seed implantation. Int J Radiat Oncol Biol Phys 71:28–35

    Article  PubMed  Google Scholar 

  22. Stock RG, Stone NN, Lo YC et al (2000) Postimplant dosimetry for (125)I prostate implants: definitions and factors affecting outcome. Int J Radiat Oncol Biol Phys 48:899–906

    Article  PubMed  CAS  Google Scholar 

  23. Stock RG, Stone NN, Wesson MF, DeWyngaert JK (1995) A modified technique allowing interactive ultrasound-guided three-dimensional transperineal prostate implantation. Int J Radiat Oncol Biol Phys 32:219–225

    Article  PubMed  CAS  Google Scholar 

  24. Rosenthal SA, Bittner NH, Beyer DC et al (2011) American Society for Radiation Oncology (ASTRO) and American College of Radiology (ACR) practice guideline for the transperineal permanent brachytherapy of prostate cancer. Int J Radiat Oncol Biol Phys 79:335–341

    Article  PubMed  Google Scholar 

  25. Stock RG, Stone NN, Tabert A et al (1998) A dose-response study for I-125 prostate implants. Int J Radiat Oncol Biol Phys 41:101–108

    Article  PubMed  CAS  Google Scholar 

  26. Al-Qaisieh B, Ash D, Bottomley DM, Carey BM (2002) Impact of prostate volume evaluation by different observers on CT-based post-implant dosimetry. Radiother Oncol 62:267–273

    Article  PubMed  Google Scholar 

  27. Crook J, Milosevic M, Catton P et al (2002) Interobserver variation in postimplant computed tomography contouring affects quality assessment of prostate brachytherapy. Brachytherapy 1:66–73

    Article  PubMed  Google Scholar 

  28. Lee WR, Roach M 3rd, Michalski J et al (2002) Interobserver variability leads to significant differences in quantifiers of prostate implant adequacy. Int J Radiat Oncol Biol Phys 54:457–461

    Article  PubMed  Google Scholar 

  29. Simmat I, Georg P, Georg D et al (2012) Assessment of accuracy and efficiency of atlas-based autosegmentation for prostate radiotherapy in a variety of clinical conditions. Strahlenther Onkol

  30. Block T, Czempiel H, Zimmermann F (2006) Transperineal permanent seed implantation of “low-risk” prostate cancer: 5-year-experiences in 118 patients. Strahlenther Onkol 182:666–671

    Article  PubMed  Google Scholar 

  31. Moerland MA, Deursen MJ van, Elias SG et al (2009) Decline of dose coverage between intraoperative planning and post implant dosimetry for I-125 permanent prostate brachytherapy: comparison between loose and stranded seed implants. Radiother Oncol 91:202–206

    Article  PubMed  Google Scholar 

  32. Stone NN, Stock RG, Unger P (2005) Intermediate term biochemical-free progression and local control following 125iodine brachytherapy for prostate cancer. J Urol 173:803–807

    Article  PubMed  Google Scholar 

  33. Merrick GS, Grimm PD, Sylvester J et al (2007) Initial analysis of Pro-Qura: a multi-institutional database of prostate brachytherapy dosimetry. Brachytherapy 6:9–15

    Article  PubMed  Google Scholar 

  34. Salembier C, Lavagnini P, Nickers P et al (2007) Tumour and target volumes in permanent prostate brachytherapy: a supplement to the ESTRO/EAU/EORTC recommendations on prostate brachytherapy. Radiother Oncol 83:3–10

    Article  PubMed  Google Scholar 

  35. Borchers H, Pinkawa M, Donner A et al (2009) Rectourethral fistula following LDR brachytherapy. Urol Int 82:365–366

    Article  PubMed  Google Scholar 

  36. Gelblum DY, Potters L (2000) Rectal complications associated with transperineal interstitial brachytherapy for prostate cancer. Int J Radiat Oncol Biol Phys 48:119–124

    Article  PubMed  CAS  Google Scholar 

  37. Stone NN, Cesaretti JA, Rosenstein B, Stock RG (2010) Do high radiation doses in locally advanced prostate cancer patients treated with 103Pd implant plus external beam irradiation cause increased urinary, rectal, and sexual morbidity? Brachytherapy 9:114–118

    Article  PubMed  Google Scholar 

  38. Stone NN, Stock RG (2007) Long-term urinary, sexual, and rectal morbidity in patients treated with iodine-125 prostate brachytherapy followed up for a minimum of 5 years. Urology 69:338–342

    Article  PubMed  Google Scholar 

  39. Tran A, Wallner K, Merrick G et al (2005) Rectal fistulas after prostate brachytherapy. Int J Radiat Oncol Biol Phys 63:150–154

    Article  PubMed  Google Scholar 

  40. Keyes M, Schellenberg D, Moravan V et al (2006) Decline in urinary retention incidence in 805 patients after prostate brachytherapy: the effect of learning curve? Int J Radiat Oncol Biol Phys 64:825–834

    Article  PubMed  Google Scholar 

  41. Murakami N, Itami J, Okuma K et al (2008) Urethral dose and increment of international prostate symptom score (IPSS) in transperineal permanent interstitial implant (TPI) of prostate cancer. Strahlenther Onkol 184:515–519

    Article  PubMed  Google Scholar 

  42. Pal RP, Bhatt JR, Khan MA et al (2011) Prostatic length predicts functional outcomes after iodine-125 prostate brachytherapy. Brachytherapy 10:107–116

    Article  PubMed  Google Scholar 

  43. Waterman FM, Dicker AP (1999) Effect of post-implant edema on the rectal dose in prostate brachytherapy. Int J Radiat Oncol Biol Phys 45:571–576

    Article  PubMed  CAS  Google Scholar 

  44. Pinkawa M, Gagel B, Piroth MD et al (2006) Changes of dose delivery distribution within the first month after permanent interstitial brachytherapy for prostate cancer. Strahlenther Onkol 182:525–530

    Article  PubMed  Google Scholar 

  45. Pinkawa M, Asadpour B, Gagel B et al (2007) Evaluation of source displacement and dose—volume changes after permanent prostate brachytherapy with stranded seeds. Radiother Oncol 84:190–196

    Article  PubMed  Google Scholar 

  46. Loiselle CR, Waheed M, Sylvester J et al (2009) Analysis of the Pro-Qura Database: rectal dose, implant quality, and brachytherapist’s experience. Brachytherapy 8:34–39

    Article  PubMed  Google Scholar 

  47. Patriciu A, Petrisor D, Muntener M et al (2007) Automatic brachytherapy seed placement under MRI guidance. IEEE Trans Biomed Eng 54:1499–1506

    Article  PubMed  Google Scholar 

  48. Song DY, Burdette EC, Fiene J et al (2011) Robotic needle guide for prostate brachytherapy: clinical testing of feasibility and performance. Brachytherapy 10:57–63

    Article  PubMed  Google Scholar 

  49. Nath R, Bice WS, Butler WM et al (2009) AAPM recommendations on dose prescription and reporting methods for permanent interstitial brachytherapy for prostate cancer: report of Task Group 137. Med Phys 36:5310–5322

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Le Fur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Fur, E., Malhaire, J., Baverez, D. et al. Impact of learning curve and technical changes on dosimetry in low-dose brachytherapy for prostate cancer. Strahlenther Onkol 188, 1091–1095 (2012). https://doi.org/10.1007/s00066-012-0242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0242-9

Keywords

Schlüsselwörter

Navigation