Skip to main content
Log in

Influence of the serum levels of immunoglobulins on clinical outcomes in medical intensive-care patients

Einfluss der Immunglobulin-Spiegel im Serum von Patienten auf Intensivstation auf deren klinisches Outcome

  • Originalien
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Abstract

Introduction

Endogenous immunoglobulins (Igs) are of fundamental importance in the host defense after microbial infections. However, the therapeutic administration of intravenous IgG (IVIgG) has not yet been shown to improve clinical outcomes in patients suffering from sepsis, and in the case of IgM-containing preparations (IVIgGMA) the positive evidence is only weak. Recently published studies implicate that Ig levels on admission could have an impact on the patient’s response to IVIg treatment and on outcomes of critically ill patients.

Methods

In this noninterventional study, the serum levels of IgG, IgM, and IgA were determined in 340 medical patients on ICU admission, and clinical outcomes were prospectively recorded (ICU mortality, need for renal replacement therapy (RRT), need for mechanical ventilation, substitution of coagulation factors, and amount of red cell transfusions). Patients were prospectively grouped according to their main reason for ICU admission (sepsis, respiratory failure, cardiovascular diseases, acute renal failure, postoperative condition, state after cardiopulmonal resuscitation, gastrointestinal diseases, and others).

Results and discussion

There was no correlation between the Ig levels on admission and ICU mortality neither in the total cohort of medical ICU patients nor in any prespecified subgroup. However, in a logistic regression model that was adjusted for APACHE II score on admission, an increase in serum IgG was associated with a reduced need for mechanical ventilation in patients suffering from cardiovascular disease. On the other hand, in patients suffering from sepsis, an increased level of IgM was linked to an increased administration of coagulation factors.

Conclusion

Our data do not support the hypothesis that serum levels of immunoglobulins are linked to mortality in medical ICU patients.

Zusammenfassung

Hintergrund

Endogene Immunglobuline spielen eine bedeutende Rolle in der Immunabwehr von mikrobiellen Infektionen. Kürzlich veröffentlichte Studien legen nahe, dass die Immunglobulinspiegel bei stationärer Aufnahme eine prognostische Bedeutung bei Intensivpatienten haben könnten.

Methodik

In einer nicht-interventionellen Studie wurden die Serumspiegel von IgG, IgM und IgA von 340 Patienten bei Aufnahme auf die Intensivstation sowie das Auftreten klinischer Endpunkte (Mortalität auf ITS, Nierenersatzverfahren, invasive Beatmung, Substitution von Gerinnungsfaktoren, Gabe von Erythrozytenkonzentraten) erfasst. Abhängig von der Hauptursache für den Intensivaufenthalt wurden die Patienten prospektiv einer der folgenden Gruppen zugeordnet: Sepsis, respiratorische Insuffizienz, kardiovaskuläre Erkrankung, akutes Nierenversagen, Zustand nach Operation, Zustand nach CPR, gastrointestinale Erkrankung, sonstige Erkrankungen.

Ergebnisse und Diskussion

Es findet sich weder in der Gesamtkohorte noch in einer der prädefinierten Subgruppen eine Korrelation zwischen den Immunglobulinspiegeln bei Aufnahme und der Mortalität während des Aufenthaltes auf der Intensivstation. In einer logistischen Regression unter Berücksichtigung des Confounders APACHE-II-Score bei Aufnahme findet sich eine Korrelation zwischen erhöhten IgG-Spiegeln und geringerem Bedarf von invasiver Beatmung bei der Patientengruppe mit kardiovaskulären Erkrankungen. Andererseits besteht bei Patienten mit Sepsis ein Zusammenhang zwischen erhöhten IgM-Spiegeln und erhöhter Substitution von Gerinnungsfaktoren.

Schlussfolgerung

In unserer Studie kann kein Zusammenhang zwischen den Immunglobulinspiegeln im Serum und der ITS-Mortalität nachgewiesen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ALI:

acute lung injury

ANOVA:

analysis of variance

APACHE score:

acute physiology and chronic health evaluation score

ARDS:

acute respiratory distress syndrome

ARF:

acute renal failure

BMI:

body mass index

CHD:

coronary heart disease

CPR:

state after cardiopulmonary resuscitation

CVD:

cardiovascular diseases

DIC:

disseminated intravascular coagulopathy

GI:

gastrointestinal diseases

ICU:

intensive care unit

Ig:

immunoglobulin

IgA:

immunoglobulin A

IgG:

immunoglobulin G

IgM:

immunoglobulin M

IVIg:

intravenous immunoglobulin

N:

number

NS:

non-surviving

O:

other diseases

OP:

postoperative condition

OR:

odds ratio

RF:

respiratory failure

RRT:

renal replacement therapy

S:

surviving

SE:

sepsis

SIRS:

systemic inflammatory response syndrome

Y:

years

References

  1. Ballow M (2002) Primary immunodeficiency disorders: antibody deficiency. J Allergy Clin Immunol 109(4):581–591

    Article  CAS  PubMed  Google Scholar 

  2. Cafiero F, Gipponi M, Bonalumi U, Piccardo A, Sguotti C, Corbetta G (1992) Prophylaxis of infection with intravenous immunoglobulins plus antibiotic for patients at risk for sepsis undergoing surgery for colorectal cancer: results of a randomized, multicenter clinical trial. Surgery 112(1):24–31

    CAS  PubMed  Google Scholar 

  3. Durandy A, Kaveri SV, Kuijpers TW, Basta M, Miescher S, Ravetch JV, Rieben R (2009) Intravenous immunoglobulins—understanding properties and mechanisms. Clin Exp Immunol 158(Suppl 1):2–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Forastiero R, Martinuzzo M, Pombo G, Puente D, Rossi A, Celebrin L et al (2005) A prospective study of antibodies to beta2-glycoprotein I and prothrombin, and risk of thrombosis. J Thromb Haemost 3(6):1231–1238

    Article  CAS  PubMed  Google Scholar 

  5. Giamarellos-Bourboulis EJ, Raftogiannis M (2012) The immune response to severe bacterial infections: consequences for therapy. Expert Rev Anti Infect Ther 10(3):369–380

    Article  CAS  PubMed  Google Scholar 

  6. Hentrich M, Fehnle K, Ostermann H, Kienast J, Cornely O, Salat C et al (2006) IgMA-enriched immunoglobulin in neutropenic patients with sepsis syndrome and septic shock: a randomized, controlled, multiple-center trial. Crit Care Med 34(5):1319–1325

    Article  CAS  PubMed  Google Scholar 

  7. Imai H, Nakamoto Y, Asakura K, Miki K, Yasuda T, Miura AB (1985) Spontaneous glomerular IgA deposition in ddY mice: an animal model of IgA nephritis. Kidney Int 27(5):756–761

    Article  CAS  PubMed  Google Scholar 

  8. Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II: a severity of disease classification system. Crit Care Med 13(10):818–829

    Article  CAS  PubMed  Google Scholar 

  9. Kreymann KG, Heer G de, Nierhaus A, Kluge S (2007) Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit Care Med 35(12):2677–2685

    Article  CAS  PubMed  Google Scholar 

  10. Laupland KB, Kirkpatrick AW, Delaney A (2007) Polyclonal intravenous immunoglobulin for the treatment of severe sepsis and septic shock in critically ill adults: a systematic review and meta-analysis. Crit Care Med 35(12):2686–2692

    Article  CAS  PubMed  Google Scholar 

  11. Layward L (1993) Elevation of IgA in IgA nephropathy is localized in the serum and not saliva and is restricted to the IgA1 subclass. Nephrol Dial Transplant 8(1):25–28

    CAS  PubMed  Google Scholar 

  12. Levi M, Schultz M, van der Poll T (2013) Sepsis and thrombosis. Semin Thromb Hemost 39(5):559–566

    Article  CAS  PubMed  Google Scholar 

  13. Maeda A, Gohda T, Funabiki K, Horikoshi S, Shirato I, Tomino Y (2003) Significance of serum IgA levels and serum IgA/C3 ratio in diagnostic analysis of patients with IgA nephropathy. J Clin Lab Anal 17(3):73–76

    Article  CAS  PubMed  Google Scholar 

  14. Miyawaki S, Muso E, Takeuchi E, Matsushima H, Shibata Y, Sasayama S, Yoshida H (1997) Selective breeding for high serum IgA levels from noninbred ddY mice: isolation of a strain with an early onset of glomerular IgA deposition. Nephron 76(2):201–207

    Article  CAS  PubMed  Google Scholar 

  15. Nakayama K, Ohsawa I, Maeda-Ohtani A, Murakoshi M, Horikoshi S, Tomino Y (2008) Prediction of diagnosis of immunoglobulin A nephropathy prior to renal biopsy and correlation with urinary sediment findings and prognostic grading. J Clin Lab Anal 22(2):114–118

    Article  CAS  PubMed  Google Scholar 

  16. Päsler M (2012) Hypogammaglobulinemia in sepsis. Annu Update Intensive Care Emerg Med 2012:98–108

    Google Scholar 

  17. Pildal J, Gotzsche PC (2004) Polyclonal immunoglobulin for treatment of bacterial sepsis: a systematic review. Clin Infect Dis 39(1):38–46

    Article  CAS  PubMed  Google Scholar 

  18. Reinhart K, Brunkhorst FM, Bone H-G, Bardutzky J, Dempfle C-E, Forst H et al (2010) Prevention, diagnosis, therapy and follow-up care of sepsis: 1st revision of S-2k guidelines of the German Sepsis Society (Deutsche Sepsis-Gesellschaft e. V. (DSG)) and the German Interdisciplinary Association of Intensive Care and Emergency Medicine (Deutsche Interdisziplinare Vereinigung fur Intensiv- und Notfallmedizin (DIVI)). Ger Med Sci 8: Doc14

  19. Rochwerg B, Wludarczyk A, Szczeklik W, Alhazzani W, Sindi A, Alshamsi F et al (2013) Fluid resuscitation in severe sepsis and septic shock: systematic description of fluids used in randomized trials. Pol Arch Med Wewn 123(11):603–608

    PubMed  Google Scholar 

  20. Rodriguez A, Rello J, Neira J, Maskin B, Ceraso D, Vasta L, Palizas F (2005) Effects of high-dose of intravenous immunoglobulin and antibiotics on survival for severe sepsis undergoing surgery. Shock 23(4):298–304

    Article  CAS  PubMed  Google Scholar 

  21. Roos A, Rieben R, Faber-Krol MC, Daha MR (2003) IgM-enriched human introvenous immunoglobulin strongly inhibits complement-dependent porcine cell cytotoxicity mediated by human xenoreactive antibodies. Xenotransplantation 10(6):596–605

    Article  PubMed  Google Scholar 

  22. Salobir B, Sabovic M, Hojnik M, Cucnik S, Kveder T (2007) Anti-beta 2-glycoprotein I antibodies of IgM class are linked to thrombotic disorders in young women without autoimmune disease. Immunobiology 212(3):193–199

    Article  CAS  PubMed  Google Scholar 

  23. Schedel I, Dreikhausen U, Nentwig B, Hockenschnieder M, Rauthmann D, Balikcioglu S et al (1991) Treatment of gram-negative septic shock with an immunoglobulin preparation: a prospective, randomized clinical trial. Crit Care Med 19(9):1104–1113

    Article  CAS  PubMed  Google Scholar 

  24. Schwartz-Albiez R, Monteiro RC, Rodriguez M, Binder CJ, Shoenfeld Y (2009) Natural antibodies, intravenous immunoglobulin and their role in autoimmunity, cancer and inflammation. Clin Exp Immunol 158(Suppl 1):43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spycher M, Matozan K, Minnig K, Zehnder R, Miescher S, Hoefferer L, Rieben R (2009) In vitro comparison of the complement-scavenging capacity of different intravenous immunoglobulin preparations. Vox Sang 97(4):348–354

    Article  CAS  PubMed  Google Scholar 

  26. Taccone FS, Stordeur P, Backer D de, Creteur J, Vincent J-L (2009) Gamma-globulin levels in patients with community-acquired septic shock. Shock 32(4):379–385

    Article  CAS  PubMed  Google Scholar 

  27. Tomino Y (2012) Predictors of prognosis in IgA nephropathy. Kaohsiung J Med Sci 28(10):517–520

    Article  CAS  PubMed  Google Scholar 

  28. Turgeon AF, Hutton B, Fergusson DA, McIntyre L, Tinmouth AA, Cameron DW, Hebert PC (2007) Meta-analysis: intravenous immunoglobulin in critically ill adult patients with sepsis. Ann Intern Med 146(3):193–203

    Article  PubMed  Google Scholar 

  29. Venet F, Gebeile R, Bancel J, Guignant C, Poitevin-Later F, Malcus C et al (2011) Assessment of plasmatic immunoglobulin G, A and M levels in septic shock patients. Int Immunopharmacol 11(12):2086–2090

    Article  CAS  PubMed  Google Scholar 

  30. Walpen AJ, Laumonier T, Aebi C, Mohacsi PJ, Rieben R (2004) Immunoglobulin M-enriched intravenous immunoglobulin inhibits classical pathway complement activation, but not bactericidal activity of human serum. Xenotransplantation 11(2):141–148

    Article  PubMed  Google Scholar 

  31. Werdan K (2001) Intravenous immunoglobulin for prophylaxis and therapy of sepsis. Curr Opin Crit Care 7(5):354–361

    Article  CAS  PubMed  Google Scholar 

  32. Werdan K (2001) Pathophysiology of septic shock and multiple organ dysfunction syndrome and various therapeutic approaches with special emphasis on immunoglobulins. Ther Apher 5(2):115–122

    Article  CAS  PubMed  Google Scholar 

  33. Werdan K, Pilz G, Bujdoso O, Fraunberger P, Neeser G, Schmieder RE et al (2007) Score-based immunoglobulin G therapy of patients with sepsis: the SBITS study. Crit Care Med 35(12):2693–2701

    Article  CAS  PubMed  Google Scholar 

  34. Werdan K, Pilz G, Müller-Werdan U, Maas Enriquez M, Schmitt DV, Mohr F-W et al (2008) Immunoglobulin G treatment of postcardiac surgery patients with score identified severe systemic inflammatory response syndrome—the ESSICS study. Crit Care Med 36(3):716–723

    Article  CAS  PubMed  Google Scholar 

  35. Zanon E, Prandoni P, Vianello F, Saggiorato G, Carraro G, Bagatella P, Girolami A (1999) Anti-beta2-glycoprotein I antibodies in patients with acute venous thromboembolism: prevalence and association with recurrent thromboembolism. Thromb Res 96(4):269–274

    Article  CAS  PubMed  Google Scholar 

  36. Zeerleder S, Hack CE, Wuillemin WA (2005) Disseminated intravascular coagulation in sepsis. Chest 128(4):2864–2875

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ebelt MD.

Ethics declarations

Conflict of interest

C. Geier, J. Schröder, A. Tamm, S. Dietz, S. Nuding, K. Holder, and Ö. Khandanpour state that there are no conflicts of interest.

H. Ebelt and K. Werdan have received funding for scientific projects and honoraria for lectures from Biotest AG. Ebelt and Werdan are members of the advisory board of the ongoing CIGMA trial sponsored by Biotest AG.

The study was conducted in accordance with the standards of the local ethics committee of the Martin Luther University Halle-Wittenberg.

Due to the study’s noninterventional design the need for patient consent was waived.

Additional information

M. Buerke, Siegen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geier, C., Schröder, J., Tamm, A. et al. Influence of the serum levels of immunoglobulins on clinical outcomes in medical intensive-care patients. Med Klin Intensivmed Notfmed 112, 30–37 (2017). https://doi.org/10.1007/s00063-015-0121-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-015-0121-0

Keywords

Schlüsselwörter

Navigation