Skip to main content

Advertisement

Log in

Low-Dose CCT to Exclude Contraindications to Lumbar Puncture

Benefits and Limitations

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Background

Low-dose cranial computed tomography (LD-CCT) based on iterative reconstruction has been shown to have sufficient image quality to assess cerebrospinal fluid spaces (CSF) and midline structures but not to exclude subtle parenchymal pathologies. Patients without focal neurological deficits often undergo CCT before lumbar puncture (LP) to exclude contraindications to LP including brain herniation or increased CSF pressure. We performed LD-CCT to assess if image quality is appropriate for this indication.

Methods

A total of 58 LD-CCT (220 mA/120 kV) of patients before LP were retrospectively evaluated and compared to 79 normal standard dose cranial computed tomography (SD-CCT) (350 mA/120 kV). Iterative reconstruction used for both dose levels was increased by one factor for LD-CCT. We assessed the signal-to-noise (SNR) and contrast-to-noise ratio (CNR), the dose estimates and scored diagnostic image quality by two raters independently. Significance level was set at p < 0.05.

Results

The inner and outer CSF spaces except the sulci were equally well depicted by the LD-CCT and SD-CCT; however, depiction of the subtle density differences of the brain parenchyma and the sulci was significantly worse in the LD-CCT (p < 0.0001). The SNR in the gray matter (9.35 vs. 10.61, p < 0.05) and white matter (7.23 vs. 8.15, p < 0.001) were significantly lower in LD-CCT than in SD-CCT with significantly lower dose estimates (1.04 vs. 1.69 mSv, respectively p < 0.0001).

Conclusion

The use of LD-CCT with a dose reduction of almost 50% is sufficient to exclude contraindications to LP; however, LD-CCT cannot exclude subtle parenchymal pathologies. Therefore, in patients with suspected parenchymal pathology, SD-CCT is still the method of choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    Article  CAS  PubMed  Google Scholar 

  2. Bundesamt für Strahlenschutz (BFS). Diagnostische Referenzwerte für diagnostische und interventionelle Röntgenanwendungen. In: Themen: Ionisierende Strahlung. Bekanntmachung der aktualisierten diagnostischen Referenzwerte. 2016. https://www.bfs.de/DE/themen/ion/anwendung-medizin/diagnostik/referenzwerte/referenzwerte.html. Accessed 13 Jan 2017.

    Google Scholar 

  3. Shrimpton PC, Hillier MC, Meeson S, Golding SJ. Doses from Computed Tomography (CT) Examinations in the UK—2011 Review. Public Heath England. 2014. https://www.gov.uk/government/publications/doses-from-computed-tomography-ct-examinations-in-the-uk. Accessed 4 July 2017.

    Google Scholar 

  4. Bundesamt für Gesundheit (BAG). Diagnostische Referenzwerte in der Computertomographie. 2010. https://www.bag.admin.ch/bag/de/home/themen/mensch-gesundheit/strahlung-radioaktivitaet-schall/bewilligungen-aufsicht-im-strahlenschutz/informationen-fuer-medizinische-betriebe/diagnostische-referenzwerte-im-strahlenschutz.html. Accessed 4 July 2017.

    Google Scholar 

  5. United Nations. Effects of ionizing radiation. In: UNSCEAR 2008 report to the general assembly, with 2 scientific annexes. Volume I. 2008. http://www.unscear.org/unscear/en/publications.html. Accessed 4 July 2017.

    Google Scholar 

  6. Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA, Saini S. Strategies for CT radiation dose optimization. Radiology. 2004;230:619–28.

    Article  PubMed  Google Scholar 

  7. Kalra MK, Maher MM, Toth TL, Schmidt B, Westerman BL, Morgan HT, Saini S. Techniques and applications of automatic tube current modulation for CT. Radiology. 2004;233:649–57.

    Article  PubMed  Google Scholar 

  8. Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol. 1973;46:1016–22.

    Article  CAS  PubMed  Google Scholar 

  9. Willemink MJ, de Jong PA, Leiner T, de Heer LM, Nievelstein RA, Budde RP, Schilham AM. Iterative reconstruction techniques for computed tomography part 1: technical principles. Eur Radiol. 2013;23:1623–31.

    Article  PubMed  Google Scholar 

  10. Blasel S, Huck L, Lescher S, Ackermann H, Berkefeld J, Wagner M. Low dose CT of the brain in the follow-up of Intracranial hemorrhage. Int J Radiol Imaging Technol. 2016;2(2):015.

    Article  Google Scholar 

  11. Bodelle B, Klein E, Naguib NN, Bauer RW, Kerl JM, Al-Butmeh F, Wichmann JL, Ackermann H, Lehnert T, Vogl TJ, Schulz B. Acute intracranial hemorrhage in CT: benefits of sinogram-affirmed iterative reconstruction techniques. AJNR Am J Neuroradiol. 2014;35(3):445–9.

    Article  CAS  PubMed  Google Scholar 

  12. Corcuera-Solano I, Doshi AH, Noor A, Tanenbaum LN. Repeated head CT in the neurosurgical intensive care unit: feasibility of sinogram-affirmed iterative reconstruction-based ultra-low-dose CT for surveillance. AJNR Am J Neuroradiol. 2014;35:1281–7.

    Article  CAS  PubMed  Google Scholar 

  13. Kaul D, Kahn J, Huizing L, Wiener E, Grupp U, Böning G, Ghadjar P, Renz DM, Streitparth F. Reducing Radiation Dose in Adult Head CT using Iterative Reconstruction—A Clinical Study in 177 Patients. Rofo. 2016;188:155–62.

    Article  CAS  PubMed  Google Scholar 

  14. von Kummer R, Meyding-Lamadé U, Forsting M, Rosin L, Rieke K, Hacke W, Sartor K. Sensitivity and prognostic value of early CT in occlusion of the middle cerebral artery trunk. AJNR Am J Neuroradiol. 1994;15:9–15.

    Google Scholar 

  15. Diener HC, Ackermann H. Leitlinien für Diagnostik und Therapie in der Neurologie. 5th ed. Stuttgart: Thieme; 2012.

    Google Scholar 

  16. Woitalla D, Deutsche Gesellschaft für Neurologie (DGN). Diagnostische Liquorpunktion. In: Leitlinien für Diagnostik und Therapie in der Neurologie. 2012. http://www.dgn.org/images/red_leitlinien/LL_2012/pdf/ll_84_2012_diagnostische_liquorpunktion.pdf. Accessed 12 Jan 2017.

    Google Scholar 

  17. Gröschel K, Gröschel S. How to do: the diagnostic lumbar puncture. Dtsch Med Wochenschr. 2015;140:738–40.

    Article  PubMed  Google Scholar 

  18. Jinkins JR, Athale S, Xiong L, Yuh WT, Rothman MI, Nguyen PT. MR of optic papilla protrusion in patients with high intracranial pressure. AJNR Am J Neuroradiol. 1996;17:665–8.

    CAS  PubMed  Google Scholar 

  19. Kilic K, Erbas G, Guryildirim M, Arac M, Ilgit E, Coskun B. Lowering the dose in head CT using adaptive statistical iterative reconstruction. AJNR Am J Neuroradiol. 2011;32:1578–82.

    Article  CAS  PubMed  Google Scholar 

  20. Korn A, Fenchel M, Bender B, Danz S, Hauser TK, Ketelsen D, Flohr T, Claussen CD, Heuschmid M, Ernemann U, Brodoefel H. Iterative reconstruction in head CT: image quality of routine and low-dose protocols in comparison with standard filtered back-projection. AJNR Am J Neuroradiol. 2012;33:218–24.

    Article  CAS  PubMed  Google Scholar 

  21. Korn A, Bender B, Fenchel M, Spira D, Schabel C, Thomas C, Flohr T, Claussen CD, Bhadelia R, Ernemann U, Brodoefel H. Sinogram affirmed iterative reconstruction in head CT: Improvement of objective and subjective image quality with concomitant radiation dose reduction. Eur J Radiol. 2013;82:1431–5.

    Article  CAS  PubMed  Google Scholar 

  22. Rapalino O, Kamalian S, Kamalian S, Payabvash S, Souza LCS, Zhang D, Mukta J, Sahani DV, Lev MH, Pomerantz SR. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction. AJNR Am J Neuroradiol. 2012;33:609–15.

    Article  CAS  PubMed  Google Scholar 

  23. Ren Q, Dewan SK, Li M, Li J, Mao D, Wang Z, Hua Y. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT. Eur J Radiol. 2012;81:2597–601.

    Article  PubMed  Google Scholar 

  24. Wu TH, Hung SC, Sun JY, Lin CJ, Lin CH, Chiu CF, Liu MJ, Teng MM, Guo WY, Chang CY. How far can the radiation dose be lowered in head CT with iterative reconstruction? Analysis of imaging quality and diagnostic accuracy. Eur Radiol. 2013;23:2612–21.

    Article  PubMed  Google Scholar 

  25. Bodelle B, Wichmann JL, Scholtz J‑E, Lehnert T, Vogl TJ, Luboldt W, Schulz B. Iterative reconstruction leads to increased subjective and objective image quality in cranial CT in patients with stroke. AJR Am J Roentgenol. 2015;205:618–22.

    Article  PubMed  Google Scholar 

  26. Komlosi P, Zhang Y, Leiva-Salinas C, Ornan D, Patrie JT, Xin W, Grady D, Wintermark M. Adaptive statistical iterative reconstruction reduces patient radiation dose in neuroradiology CT studies. Neuroradiology. 2014;56:187–93.

    Article  PubMed  Google Scholar 

  27. Ryska P, Kvasnicka T, Jandura J, Klzo L, Grepl J, Zizka J. Reduction of effective dose and organ dose to the eye lens in head MDCT using iterative image reconstruction and automatic tube current modulation. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014;158(2):265–72.

    Article  PubMed  Google Scholar 

  28. Noël PB, Fingerle AA, Renger B, Münzel D, Rummeny EJ, Dobritz M. Initial performance characterization of a clinical noise-suppressing reconstruction algorithm for MDCT. AJR Am J Roentgenol. 2011;197:1404–9.

    Article  PubMed  Google Scholar 

  29. Buhk JH, Laqmani A, von Schultzendorff HC, Hammerle D, Sehner S, Adam G, Fiehler J, Nagel HD, Regier M. Intraindividual evaluation of the influence of iterative reconstruction and filter kernel on subjective and objective image quality in computed tomography of the brain. Rofo. 2013;185:741–8.

    Article  CAS  PubMed  Google Scholar 

  30. European Commission.. European Guidelines on Quality Criteria EUR 16262 EN. 2017. http://www.drs.dk/guidelines/ct/quality/Page004.htm. Accessed 4 July 2017.

    Google Scholar 

  31. Pexman JH, Barber PA, Hill MD, Sevick RJ, Demchuk AM, Hudon ME, Hu WY, Buchan AM. Use of the Alberta Stroke Program Early CT Score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR Am J Neuroradiol. 2001;22:1534–42.

    CAS  PubMed  Google Scholar 

  32. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, Dávalos A, Majoie CB, van der Lugt A, de Miquel MA, Donnan GA, Roos YB, Bonafe A, Jahan R, Diener HC, van den Berg LA, Levy EI, Berkhemer OA, Pereira VM, Rempel J, Millán M, Davis SM, Roy D, Thornton J, Román LS, Ribó M, Beumer D, Stouch B, Brown S, Campbell BC, van Oostenbrugge RJ, Saver JL, Hill MD, Jovin TG; HERMES collaborators. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387(10029):1723–31.

    Article  PubMed  Google Scholar 

  33. Tumani H, Petzold A, Wick M, Kühn HJ, Uhr M, Otto M, Regeniter A, Brettschneider J. Liquordiagnostik bei CT-negativer Subarachnoidalblutung. Nervenarzt. 2010;81:973–9.

    Article  CAS  PubMed  Google Scholar 

  34. Steinmetz H, Deutsche Gesellschaft für Neurologie (DGN). Subarachnoidalblutung (SAB). 2015. https://www.dgn.org/images/red_leitlinien/LL_2012/pdf/030-073l_S1_Subarachnoidalblutung_2012_verlaengert.pdf (Created 2012). Accessed 4 July 2017.

    Google Scholar 

  35. Dubosh NM, Bellolio MF, Rabinstein AA, Edlow JA. Sensitivity of early brain computed tomography to exclude aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Stroke. 2016;47:750–5.

    Article  PubMed  Google Scholar 

  36. Ewen K. Die effektive Dosis in der Röntgendiagnostik. Z Med Phys. 2000;10:119–22.

    Article  Google Scholar 

Download references

Acknowledgements

We declare no financial conflict of interests. The work was part of a scientific cooperation between our institute and Philips Healthcare (Hamburg, Germany). The authors state that this work has not received any funding by the company. We received constant technical support from Philips Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Blasel.

Ethics declarations

Conflict of interest

S. Blasel, S. Alex, H. Ackermann, J. Tichy, J. Berkefeld and M. Wagner declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blasel, S., Alex, S., Ackermann, H. et al. Low-Dose CCT to Exclude Contraindications to Lumbar Puncture. Clin Neuroradiol 29, 117–123 (2019). https://doi.org/10.1007/s00062-017-0628-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-017-0628-2

Keywords

Navigation