Skip to main content
Log in

Role of magnolol in the proliferation of vascular smooth muscle cells

Rolle von Magnolol bei der Proliferation glatter Muskelzellen der Gefäße

  • e-Herz: Original article
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

Proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of vascular remodeling. Recently, magnolol has been reported to have a potential role in regulating tumor necrosis factor α-induced proliferation of VSMCs. However, the role of magnolol in platelet-derived growth factor (PDGF)-induced proliferation of VSMCs remains unknown.

Aims

Our purpose was to elucidate the effect of magnolol on the proliferation of VSMCs induced by PDGF-BB and to investigate the underlying molecular mechanisms.

Methods and results

Our data demonstrated that magnolol inhibited rat VSMC proliferation and DNA synthesis stimulated by 20 ng/ml PDGF-BB without causing cell cytotoxicity. Flow cytometric analysis showed that magnolol inhibited S-phase entry of VSMCs. We also demonstrated that magnolol caused this effect by inhibiting the mRNA and protein expression of cyclin D1, cyclin E, and cyclin-dependent kinases 2 and 4 in PDGF-BB-stimulated VSMCs. Further analysis showed that the inhibitory effect of magnolol on the proliferation of VSMCs was associated with the inhibition of the PDGF-BB-stimulated production of intracellular reactive oxygen species (ROS) and Ras, MEK, and ERK1/2 activation.

Conclusion

These results demonstrate that magnolol can block the proliferation of VSMCs through inhibition of intracellular ROS production and Ras-MEK-ERK1/2 pathways. Magnolol, therefore, has a potential application in preventing atherosclerosis and restenosis.

Zusammenfassung

Hintergrund

Die Proliferation glatter Muskelzellen der Gefäße („vascular smooth muscle cells“, VSMC) hat Anteil an der Entstehung des vaskulären Remodellings. Vor Kurzem wurde berichtet, das Magnolol möglicherweise eine Rolle bei der Regulierung der Tumornekrosefaktor-α-induzierten Proliferation von VSMC spielt. Allerdings ist bisher noch gar nichts über die Rolle von Magnolol bei der durch Thrombozytenwachstumsfaktor („platelet-derived growth factor“, PDGF) induzierten Proliferation von VSMC bekannt.

Ziel

Ziel der vorliegenden Studie war es, die Wirkung von Magnolol auf die durch PDGF-BB induzierte Proliferation von VSMC zu klären und den zugrunde liegenden molekularen Mechanismus zu untersuchen.

Methoden und Ergebnisse

Anhand der vorliegenden Daten zeigte sich, das Magnolol bei Ratten die VSMC-Proliferation und die durch 20 ng/ml PDGF-BB stimulierte DNA-Synthese hemmte, ohne Zytotoxizität zu verursachen. Durch flusszytometrische Analyse wurde die Inhibition des Eintritts der VSMC in die S-Phase durch Magnolol nachgewiesen. Außerdem wurde hier der Nachweis erbracht, dass Magnolol diese Wirkung erzeugte, indem es die mRNA- und Proteinexpression von Zyklin D1, Zyklin E und der zyklinabhängigen Kinasen 2 und 4 in PDGF-BB-stimulierten VSMC hemmte. Weitere Untersuchungen ergaben, dass der inhibitorische Effekt von Magnolol auf die Proliferation von VSMC mit der Hemmung der PDGF-BB-stimulierten Bildung intrazellulärer reaktiver Sauerstoffspezies (ROS) und der Aktivierung von Ras, MEK und ERK1/2 einherging.

Schlussfolgerung

Die vorliegenden Ergebnisse zeigen, dass Magnolol die Proliferation von VSMC durch Inhibition der intrazellulären ROS-Bildung und der Ras-MEK-ERK1/2-Signalwege hemmt. Ein potenzielles Anwendungsgebiet von Magnolol wäre somit die Vorbeugung von Atherosklerose und Restenose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Willis AI, Pierre-Paul D, Sumpio BE, Gahtan V (2004) Vascular smooth muscle cell migration: current research and clinical implications. Vasc Endovascular Surg 38:11–23

    Article  CAS  PubMed  Google Scholar 

  2. Greenberg D, Bakhai A, Cohen DJ (2004) Can we afford to eliminate restenosis? Can we afford not to? J Am Coll Cardiol 43:513–518

    Article  PubMed  Google Scholar 

  3. Moses JW, Leon MB, Popma JJ et al (2003) Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 349:1315–1323

    Article  CAS  PubMed  Google Scholar 

  4. Babapulle MN, Joseph L, Bélisle P et al (2004) A hierarchical Bayesian meta-analysis of randomised clinical trials of drug-eluting stents. Lancet 364:583–591

    Article  CAS  PubMed  Google Scholar 

  5. Bavry AA, Kumbhani DJ, Helton TJ, Bhatt DL (2005) Risk of thrombosis with the use of sirolimus-eluting stents for percutaneous coronary intervention (from registry and clinical trial data). Am J Cardiol 95:1469–1472

    Article  CAS  PubMed  Google Scholar 

  6. Nilsen DW, Melberg T, Larsen AI et al (2006) Late complications following the deployment of drug eluting stents. Int J Cardiol 109:398–401

    Article  PubMed  Google Scholar 

  7. Ikeda K, Nagase H (2002) Magnolol has the ability to induce apoptosis in tumor cells. Biol Pharm Bull 25:1546–1549

    Article  CAS  PubMed  Google Scholar 

  8. Park J, Lee J, Jung E et al (2004) In vitro antibacterial and anti-inflammatory effects of honokiol and magnolol against Propionibacterium sp. Eur J Pharmacol 496:189–195

    Article  CAS  PubMed  Google Scholar 

  9. Lee J, Jung E, Park J et al (2005) Anti-inflammatory effects of magnolol and honokiol are mediated through inhibition of the downstream pathway of MEKK-1 in NF-kappaB activation signaling. Planta Med 71:338–343

    Article  CAS  PubMed  Google Scholar 

  10. Teng CM, Yu SM, Chen CC et al (1990) EDRF-release and Ca+(+)-channel blockade by magnolol, an antiplatelet agent isolated from Chinese herb Magnolia officinalis, in rat thoracic aorta. Life Sci 47:1153–1161

    Article  CAS  PubMed  Google Scholar 

  11. Karki R, Ho OM, Kim DW (2013) Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells. Biochim Biophys Acta 1830:2619–2628

    Article  CAS  PubMed  Google Scholar 

  12. Kim HM, Bae SJ, Kim DW et al (2007) Inhibitory role of magnolol on proliferative capacity and matrix metalloproteinase-9 expression in TNF-alpha-induced vascular smooth muscle cells. Int Immunopharmacol 7:1083–1091

    Article  CAS  PubMed  Google Scholar 

  13. Luo J, Xu Y, Zhang M et al (2013) Magnolol inhibits LPS-induced inflammatory response in uterine epithelial cells: magnolol inhibits LPS-induced inflammatory response. Inflammation (Epub ahead of print)

  14. Jada S, Doma MR, Singh PP et al (2012) Design and synthesis of novel magnolol derivatives as potential antimicrobial and antiproliferative compounds. Eur J Med Chem 51:35–41

    Article  CAS  PubMed  Google Scholar 

  15. Chen LC, Liu YC, Liang YC et al (2009) Magnolol inhibits human glioblastoma cell proliferation through upregulation of p21/Cip1. J Agric Food Chem 57:7331–7337

    Article  CAS  PubMed  Google Scholar 

  16. Chilampalli C, Guillermo R, Zhang X et al (2011) Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action. BMC Cancer 11:456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677

    Article  CAS  PubMed  Google Scholar 

  18. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  CAS  PubMed  Google Scholar 

  19. Jirawatnotai S, Aziyu A, Osmundson EC et al (2004) Cdk4 is indispensable for postnatal proliferation of the anterior pituitary. J Biol Chem 279:51100–51106

    Article  CAS  PubMed  Google Scholar 

  20. Martín A, Odajima J, Hunt SL et al (2005) Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27(Kip1) and p21(Cip1). Cancer Cell 7:591–598

    Article  PubMed  Google Scholar 

  21. Zhao Y, Lv M, Lin H et al (2013) Rho-associated protein kinase isoforms stimulate proliferation of vascular smooth muscle cells through ERK and induction of cyclin D1 and PCNA. Biochem Biophys Res Commun 432:488–493

    Article  CAS  PubMed  Google Scholar 

  22. Ravenhall C, Guida E, Harris T et al (2000) The importance of ERK activity in the regulation of cyclin D1 levels and DNA synthesis in human cultured airway smooth muscle. Br J Pharmacol 131:17–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Corona G, Deiana M, Incani A et al (2009) Hydroxytyrosol inhibits the proliferation of human colon adenocarcinoma cells through inhibition of ERK1/2 and cyclin D1. Mol Nutr Food Res 53:897–903

    Article  CAS  PubMed  Google Scholar 

  24. Park J, Ha H, Seo J et al (2004) Mycophenolic acid inhibits platelet-derived growth factor-induced reactive oxygen species and mitogen-activated protein kinase activation in rat vascular smooth muscle cells. Am J Transplant 4:1982–1990

    Article  CAS  PubMed  Google Scholar 

  25. Mesquita FS, Dyer SN, Heinrich DA et al (2010) Reactive oxygen species mediate mitogenic growth factor signaling pathways in human leiomyoma smooth muscle cells. Biol Reprod 82:341–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. L. Wu, H. Zhou, W. Xia, Q. Dong, and L. Wang state that there are no conflicts of interest. The accompanying manuscript does not include studies on humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Zou, H., Xia, W. et al. Role of magnolol in the proliferation of vascular smooth muscle cells. Herz 40, 542–548 (2015). https://doi.org/10.1007/s00059-014-4051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-014-4051-z

Keywords

Schlüsselwörter

Navigation