Skip to main content
Log in

Occlusal plane rotation and orthodontic decompensation: influence on the outcome of surgical correction of class III malocclusion

Rotation der Okklusionsebene und kieferorthopädische Dekompensation: Einfluss auf das Ergebnis der chirurgischen Korrektur einer Klasse-III-Malokklusion

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Purpose

The aim of this retrospective multicenter study is to evaluate the influence of surgical manipulation of the upper occlusal plane (UOP) and orthodontic decompensation on the outcome of class III orthognathic surgery.

Methods

Incisor inclinations, occlusal plane inclination as well as skeletal and soft tissue changes were assessed in lateral cephalograms of 85 class III patients who had previously undergone orthognathic surgery. Fourteen linear and eight angular measurements were performed on each radiograph at the beginning of treatment (T0), before surgery (T1) and at the end of treatment (T2) using imaging software. After measurement of variables, Mann–Whitney U‑test, repeated-measures analysis of variance (ANOVA) with Bonferroni multiple comparison test, and Spearman’s correlation analysis were performed.

Results

A statistically significant improvement was observed in both sagittal skeletal and soft tissue measurements (p < 0.05). Surgical change in UOP was significantly correlated with changes in overbite, upper lip strain and soft tissue B‑point change in the sagittal direction (p < 0.05). Overjet change was significantly correlated with changes in the soft tissue and all sagittal skeletal parameters except for SNA. Changes in the incisor inclinations was significantly correlated with changes in the sagittal skeletal parameters and lower facial height. Significant differences were also observed between the groups with induced clockwise or counterclockwise rotation of the mandible in terms of IMPA (long axis of LI to mandibular plane), overbite, upper lip strain and position of soft tissue B‑point (p < 0.05).

Conclusion

Sufficient dental decompensation is crucial for controlling the sagittal as well as the vertical relationship during surgery. Counterclockwise rotation provides an increase in sagittal projection of the mandibular body at the soft tissue B‑point.

Zusammenfassung

Zielsetzung

Ziel dieser retrospektiven multizentrischen Studie ist es, den Einfluss chirurgischer Interventionen an der oberen Okklusionsebene (UOP) und kieferorthopädischer Dekompensationen auf das Ergebnis einer kieferorthopädischen Klasse-III-Korrekturoperation zu untersuchen.

Methoden

Die Neigung der Schneidezähne, die Neigung der Okklusionsebene sowie Veränderungen des Skeletts und des Weichgewebes wurden bei 85 Klasse-III-Patienten, die sich einem orthognathen Eingriff unterzogen, anhand von seitlichen Kephalogrammen bewertet. Auf jeder Röntgenaufnahme wurden zu Beginn der Behandlung (T0), vor der Operation (T1) und am Ende der Behandlung (T2) mit Hilfe der Bildgebungssoftware 14 lineare und 8 Winkelmessungen durchgeführt. Nach Messung der Variablen wurden ein Mann-Whitney-U-Test, eine Varianzanalyse mit wiederholten Messungen (ANOVA) und Bonferroni-Mehrfachvergleichstest sowie eine Spearman-Korrelationsanalyse durchgeführt.

Ergebnisse

Sowohl bei den sagittalen Skelett- als auch bei den Weichgewebemessungen wurde eine statistisch signifikante Verbesserung festgestellt (p < 0,05). Die chirurgische Veränderung des UOP korrelierte signifikant mit Veränderungen von Overbite, Oberlippendehnung und Weichgewebe-B-Punkt. Die Veränderung des Overjet korrelierte signifikant mit Veränderungen des Weichgewebes und allen sagittalen skelettalen Parametern (Ausnahme: SNA). Die Veränderungen der Schneidezahnneigungen korrelierten signifikant mit den Veränderungen der sagittalen skelettalen Parameter und der unteren Gesichtshöhe. Signifikante Unterschiede wurden auch zwischen den Gruppen mit induzierter Rotation gegen den Uhrzeigersinn oder im Uhrzeigersinn des Unterkiefers in Bezug auf IMPA (lange Achse des LI zur Unterkieferebene), Overbite, Oberlippendehnung und Position des B‑Punkts des Weichgewebes beobachtet (p < 0,05).

Schlussfolgerung

Eine ausreichende dentale Dekompensation ist entscheidend für die Kontrolle der sagittalen und vertikalen Beziehung während der Operation. Die Rotation gegen den Uhrzeigersinn führt zu einer Zunahme der sagittalen Projektion des Unterkieferkörpers am B‑Punkt des Weichgewebes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 Abb. 1

Similar content being viewed by others

References

  1. Perillo L, Vitale M, Masucci C, D’Apuzzo F, Cozza P, Franchi L (2016) Comparisons of two protocols for the early treatment of class III dentoskeletal disharmony. Eur J Orthod 38:51–56. https://doi.org/10.1093/ejo/cjv010

    Article  PubMed  Google Scholar 

  2. Lin J, Gu Y (2003) Preliminary investigation of nonsurgical treatment of severe skeletal class III malocclusion in the permanent dentition. Angle Orthod 73:401–410. https://doi.org/10.1043/0003-3219(2003)073〈0401:PIONTO〉2.0.CO;2

    PubMed  Google Scholar 

  3. Ellis E III, McNamara J Jr (1984) Components of adult class III malocclusion. J Oral Maxillofac Surg 42:295–305. https://doi.org/10.1016/0278-2391(84)90109-5

    Article  PubMed  Google Scholar 

  4. Troy BA, Shanker S, Fields HW, Vig K, Johnston W (2009) Comparison of incisor inclination in patients with class III malocclusion treated with orthognathic surgery or orthodontic camouflage. Am J Orthod Dentofacial Orthop 135:146.e1–146.e9. https://doi.org/10.1016/j.ajodo.2008.07.012

    Article  PubMed  Google Scholar 

  5. Satrom KD, Sinclair PM, Wolford LM (1991) The stability of double jaw surgery: a comparison of rigid versus wire fixation. Am J Orthod Dentofacial Orthop 99:550–563. https://doi.org/10.1016/S0889-5406(05)81632-4

    Article  PubMed  Google Scholar 

  6. Bailey LTJ, Dover AJ, Proffit WR (2007) Long-term soft tissue changes after orthodontic and surgical corrections of skeletal class III malocclusions. Angle Orthod 77:389–396. https://doi.org/10.2319/0003-3219

    Article  PubMed  Google Scholar 

  7. Proffit WR, Phillips C, Douvartzidis N (1992) A comparison of outcomes of orthodontic and surgical-orthodontic treatment of class II malocclusion in adults. Am J Orthod Dentofacial Orthop 101:556–565. https://doi.org/10.1016/0889-5406(92)70131-S

    Article  PubMed  Google Scholar 

  8. Capelozza Filho L, Martins A, Mazzotini R, da Silva Filho O (1996) Effects of dental decompensation on the surgical treatment of mandibular prognathism. Int J Adult Orthodon Orthognath Surg 11:165–180

    PubMed  Google Scholar 

  9. Potts B, Shanker S, Fields HW, Vig KW, Beck FM (2009) Dental and skeletal changes associated with class II surgical-orthodontic treatment. Am J Orthod Dentofacial Orthop 135:566.e1–566.e7. https://doi.org/10.1016/j.ajodo.2007.08.020

    Article  PubMed  Google Scholar 

  10. Quast A, Santander P, Leding J, Klenke D, Moser N, Schliephake H et al (2021) Orthodontic incisor decompensation in orthognathic therapy—success and efficiency in three dimensions. Clin Oral Invest 25:4001–4010. https://doi.org/10.1007/s00784-020-03730-6

    Article  Google Scholar 

  11. Tsai I‑M, Lin C‑H, Wang Y‑C (2012) Correction of skeletal class III malocclusion with clockwise rotation of the maxillomandibular complex. Am J Orthod Dentofacial Orthop 141:219–227. https://doi.org/10.1016/j.ajodo.2010.01.038

    Article  PubMed  Google Scholar 

  12. Arnett GW, Jelic JS, Kim J, Cummings DR, Beress A, Worley CM Jr et al (1999) Soft tissue cephalometric analysis: diagnosis and treatment planning of dentofacial deformity. Am J Orthod Dentofacial Orthop 116:239–253. https://doi.org/10.1016/S0889-5406(99)70234-9

    Article  PubMed  Google Scholar 

  13. Baccetti T, Franchi L, Kim LH (2009) Effect of timing on the outcomes of 1‑phase nonextraction therapy of class II malocclusion. Am J Orthod Dentofacial Orthop 136:501–509. https://doi.org/10.1016/j.ajodo.2007.08.029

    Article  PubMed  Google Scholar 

  14. Franchi L, Alvetro L, Giuntini V, Masucci C, Defraia E, Baccetti T (2011) Effectiveness of comprehensive fixed appliance treatment used with the forsus fatigue resistant device in class II patients. Angle Orthod 81:678–683. https://doi.org/10.2319/102710-629.1

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bland JM, Altman DG (2007) Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat 17:571–582. https://doi.org/10.1080/10543400701329422

    Article  PubMed  Google Scholar 

  16. Dahlberg G (1940) Statistical methods for medical and biological students. Statistical methods for medical and biological students. Interscience Publications, New York

    Google Scholar 

  17. Parente E, Lacerda G, Silvares MG (2014) Surgical manipulation of the occlusal plane in class III deformities: 5 features to help planning. Open J Stomatol 4:238–242. https://doi.org/10.4236/ojst.2014.45033

    Article  Google Scholar 

  18. Kim D‑K, Baek S‑H (2013) Change in maxillary incisor inclination during surgical-orthodontic treatment of skeletal class III malocclusion: comparison of extraction and nonextraction of the maxillary first premolars. Am J Orthod Dentofacial Orthop 143:324–335. https://doi.org/10.1016/j.ajodo.2012.10.014

    Article  PubMed  Google Scholar 

  19. Worms FW, Isaacson RJ, Speidel TM (1976) Surgical orthodontic treatment planning: profile analysis and mandibular surgery. Angle Orthod 6:1–25. https://doi.org/10.1043/0003-3219(1976)046

    Google Scholar 

  20. Johnston C, Burden D, Kennedy D, Harradine N, Stevenson M (2006) Class III surgical-orthodontic treatment: a cephalometric study. Am J Orthod Dentofacial Orthop 130:300–309. https://doi.org/10.1016/j.ajodo.2005.01.023

    Article  PubMed  Google Scholar 

  21. Ahn H‑W, Baek S‑H (2011) Skeletal anteroposterior discrepancy and vertical type effects on lower incisor preoperative decompensation and postoperative compensation in skeletal class III patients. Angle Orthod 81:64–74. https://doi.org/10.2319/031710-158.1

    Article  PubMed  PubMed Central  Google Scholar 

  22. Altug-Atac AT, Bolatoglu H, Memikoglu UT (2008) Facial soft tissue profile following bimaxillary orthognathic surgery. Angle Orthod 78:50–57. https://doi.org/10.2319/122206-525.1

    Article  PubMed  Google Scholar 

  23. Koh CH, Chew MT (2004) Predictability of soft tissue profile changes following bimaxillary surgery in skeletal class III Chinese patients. J Oral Maxillofac Surg 62:1505–1509. https://doi.org/10.1016/j.joms.2004.04.022

    Article  PubMed  Google Scholar 

  24. Lin S‑S, Kerr WJS (1998) Soft and hard tissue changes in class III patients treated by bimaxillary surgery. Eur J Orthod 20:25–33. https://doi.org/10.1093/ejo/20.1.25

    Article  PubMed  Google Scholar 

  25. Sonego C, Bobrowski Â, Junior OC, Torriani M (2014) Aesthetic and functional implications following rotation of the maxillomandibular complex in orthognathic surgery: a systematic review. Int J Oral Maxillofac Surg 43:40–45. https://doi.org/10.1016/j.ijom.2013.07.738

    Article  PubMed  Google Scholar 

  26. Esteves LS, Ávila C, Medeiros PJ (2012) Changes in occlusal plane through orthognathic surgery. Dental Press J Orthod 17:160–173

    Article  Google Scholar 

  27. McCollum AG, Reyneke JP, Wolford LM (1989) An alternative for the correction of the class II low mandibular plane angle. Oral Surg Oral Med Oral Pathol 67:231–241. https://doi.org/10.1016/0030-4220(89)90344-7

    Article  PubMed  Google Scholar 

  28. Han JJ, Yang HJ, Lee S‑J, Hwang SJ (2014) Relapse after SSRO for mandibular setback movement in relation to the amount of mandibular setback and intraoperative clockwise rotation of the proximal segment. J Craniomaxillofac Surg 42:811–815. https://doi.org/10.1016/j.jcms.2013.11.018

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Dilara Seker.

Ethics declarations

Conflict of interest

E.D. Seker, E. Sunal Akturk, H.N. Yilmaz and N. Kucukkeles declare that they have no competing interests.

Ethical standards

The experimental protocols of this study were approved by Bezmialem Vakif University Ethics Committee (01/01, 19.01.2021). Written informed consent was received from all participating patients and their parents or legal guardians for the patients under 18.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seker, E.D., Sunal Akturk, E., Yilmaz, H.N. et al. Occlusal plane rotation and orthodontic decompensation: influence on the outcome of surgical correction of class III malocclusion. J Orofac Orthop 84, 373–383 (2023). https://doi.org/10.1007/s00056-022-00379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-022-00379-6

Keywords

Schlüsselwörter

Navigation