Skip to main content
Log in

Comparing the attraction of two parasitoids to herbivore-induced volatiles of maize and its wild ancestors, the teosintes

  • Original Article
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Artificial selection of crop plants for desired traits such as increased yield and improved seed or fruit quality has been hypothesized to have had a cost for other potentially useful traits, including resistance to herbivores. Besides direct defences, such as the production of toxins, plants may also indirectly protect themselves by emitting volatile organic compounds (VOCs) that attract the natural enemies of herbivores. Parasitoid wasps are known to use these VOCs to localize hosts for their offspring. However, domestication and selective breeding of crop plants have reportedly led to the loss of such signals. The aim of this study was to identify possible differences in the attraction of parasitoid wasps by modern maize and its wild ancestors, the teosintes. In a six-arm olfactometer, we compared the capacity of teosintes and maize to attract the parasitoid wasps Cotesia marginiventris (Hymenoptera: Braconidae) and Campoletis sonorensis (Hymenoptera: Ichneumonidae). We studied the attractiveness of plants in which VOC emission was induced by the application of artificial damage and caterpillar regurgitant, as well as the attractiveness of extracts of volatiles that we collected from plants exposed to herbivory. C. sonorensis did not distinguish between the odours of maize and teosintes, whereas C. marginiventris showed a significant preference for the odours of teosintes over the odours of maize. The fact that we obtained very similar results with extracts of collected volatiles implies that we could use these extracts to identify the key compounds that are responsible for wasp attraction. Restoring and/or enhancing such key parasitoid attractants in cultivated plants could be an effective way to increase natural pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bahena-Juárez F (2008) Enemigos naturales de las plagas agrícolas del maíz y otros cultivos. SAGARPA-INIFAP, Uruapan

    Google Scholar 

  • Benrey B, Callejas A, Rios L, Oyama K, Denno RF (1998) The effects of domestication of Brassica and Phaseolus on the interaction between phytophagous insects and parasitoids. Biol Control 11:130–140

    Article  Google Scholar 

  • Bottrell DG, Barbosa P, Gould F (1998) Manipulating natural enemies by plant variety selection and modification: a realistic strategy? Annu Rev Entomol 43:347–367

    Article  PubMed  CAS  Google Scholar 

  • Carroll MJ, Schmelz EA, Meagher RL, Teal PEA (2006) Attraction of Spodoptera frugiperda larvae to volatiles from herbivore-damaged maize seedlings. J Chem Ecol 32:1911–1924

    Article  PubMed  CAS  Google Scholar 

  • Cave RD (1995) Manual para el reconocimiento de parasitoides de plagas agrícolas en América Central. Zamorano Academic Press, El Zamorano, Honduras

    Google Scholar 

  • Chen YH, Welter SC (2002) Abundance of a native moth Homoeosoma electellum (Lepidoptera: Pyralidae) and activity of indigenous parasitoids in native and agricultural sunflower habitats. Environ Entomol 31:626–636

    Article  Google Scholar 

  • Chen YH, Welter SC (2003) Confused by domestication: incongruent behavioral responses of the sunflower moth, Homoeosoma electellum (Lepidoptera: Pyralidae) and its parasitoid, Dolichogenidea homoeosomae (Hymenoptera: Braconidae), towards wild and domesticated sunflowers. Biol Control 28:180–190

    Article  Google Scholar 

  • Chen YH, Welter SC (2005) Crop domestication disrupts a native tritrophic interaction associated with the sunflower, Helianthus annuus (Asterales: Asteraceae). Ecol Entomol 30:673–683

    Article  Google Scholar 

  • Chen YH, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Annu Rev Entomol 60:35–58

    Article  PubMed  CAS  Google Scholar 

  • Colazza S, McElfresh JS, Millar J (2004) Identification of volatile synomones, induced by Nezara viridula feeding and oviposition on bean spp., that attract the egg parasitoid Trissolcus basalis. J Chem Ecol 30:945–964

    Article  PubMed  CAS  Google Scholar 

  • Cortesero AM, Stapel JO, Lewis WJ (2000) Understanding and manipulating plant attributes to enhance biological control. Biol Control 17:35–49

    Article  Google Scholar 

  • D’Alessandro M, Brunner V, Von Mérey G, Turlings TCJ (2009) Strong attraction of the parasitoid Cotesia marginiventris towards minor volatile compounds of maize. J Chem Ecol 35:999–1008

    Article  PubMed  Google Scholar 

  • D’Alessandro M, Turlings TCJ (2005) In situ modification of herbivore-induced plant odors: a novel approach to study the attractiveness of volatile organic compounds to parasitic wasps. Chem Senses 30:739–753

    Article  PubMed  Google Scholar 

  • D’Alessandro M, Turlings TCJ (2006) Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods. Analyst 131:24–32

    Article  PubMed  Google Scholar 

  • Dávila-Flores A, DeWitt T, Bernal J (2013) Facilitated by nature and agriculture: performance of a specialist herbivore improves with host-plant life history evolution, domestication, and breeding. Oecologia 1–13

  • De Boer JG, Dicke M (2004) The role of methyl salicylate in prey searching behavior of the predatory mite Phytoseiulus persimilis. J Chem Ecol 30:255–271

    Article  PubMed  Google Scholar 

  • De Boer JG, Posthumus MA, Dicke M (2004) Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J Chem Ecol 30:2215–2230

    Article  PubMed  Google Scholar 

  • De La Paz Gutiérrez S, Sánchez González JJ, Ruiz Corral JA, Ron Parra J, Miranda Medrano R, De La Cruz Larios L, Lépiz Ildefonso R (2010) Diversidad de especies insectiles en maíz y teocintle en México. Folia Entomol Mex 48:1–6

    Google Scholar 

  • De Lange ES (2008) Suppression of maize indirect defenses by a specialist lepidopteran herbivore. Master’s thesis, Utrecht University, Utrecht

  • De Lange ES, Balmer D, Mauch-Mani B, Turlings TJC (2014) Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes. New Phytol 204:329–341

    Article  Google Scholar 

  • Degen T, Dillmann C, Marion-Poll F, Turlings TCJ (2004) High genetic variability of herbivore-induced volatile emission within a broad range of maize inbred lines. Plant Physiol 135:1928–1938

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Degen T, Bakalovic N, Bergvinson D, Turlings TCJ (2012) Differential performance and parasitism of caterpillars on maize inbred lines with distinctly different herbivore-induced volatile emissions. PLoS One 7:e47589

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Degenhardt J, Hiltpold I, Köllner TG, Frey M, Gierl A, Gershenzon J, Hibbard BE, Ellersieck MR, Turlings TCJ (2009) Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc Natl Acad Sci USA 106:13213–13218

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dicke M, Sabelis MW (1988) How plants obtain predatory mites as bodyguards. Neth J Zool 38:148–165

    Article  Google Scholar 

  • Doebley J (1990) Molecular systematics of Zea (Gramineae). Maydica 35:143–150

    Google Scholar 

  • Doebley J (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59

    Article  PubMed  CAS  Google Scholar 

  • Doebley JF, Iltis HH (1980) Taxonomy of Zea (Gramineae). I. A subgeneric classification with key to taxa. Am J Bot 67:982–993

    Article  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:483–488

    Article  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  PubMed  CAS  Google Scholar 

  • Du Y, Poppy GM, Powell W, Pickett JA, Wadhams LJ, Woodcock CM (1998) Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J Chem Ecol 24:1355–1368

    Article  CAS  Google Scholar 

  • Enneking D, Wink M (2000) Towards the elimination of anti-nutritional factors in grain legumes. In: Knight R (ed) Linking research and marketing opportunities for pulses in the 21st century. Volume 34 of the series current plant science and biotechnology in agriculture. Springer, Dordrecht, pp 671–683

  • Erb M, Balmer D, De Lange ES, Von Mérey G, Planchamp C, Robert CAM, Röder G, Sobhy I, Zwahlen C, Mauch-Mani B, Turlings TCJ (2011) Synergies and trade-offs between insect and pathogen resistance in maize leaves and roots. Plant, Cell Environ 34:1088–1103

    Article  CAS  Google Scholar 

  • Farias PRS, Barbosa JC, Busoli AC, Overal WL, Miranda VS, Ribeiro SM (2008) Spatial analysis of the distribution of Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) and losses in maize crop productivity using geostatistics. Neotrop Entomol 37:321–327

    Article  PubMed  Google Scholar 

  • Fritzsche Hoballah ME, Turlings TCJ (2001) Experimental evidence that plants under caterpillar attack may benefit from attracting parasitoids. Evol Ecol Res 3:553–565

    Google Scholar 

  • Fukunaga K, Hill J, Vigouroux Y, Matsuoka Y, Sánchez-G J, Liu K, Buckler ES, Doebley J (2005) Genetic diversity and population structure of teosinte. Genetics 169:2241–2254

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Glauser G, Marti G, Villard N, Doyen GA, Wolfender J-L, Turlings TCJ, Erb M (2011) Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. Plant J 68:901–911

    Article  PubMed  CAS  Google Scholar 

  • Gols R, Bullock J, Dicke M, Bukovinszky T, Harvey J (2011) Smelling the wood from the trees: non-linear parasitoid responses to volatile attractants produced by wild and cultivated cabbage. J Chem Ecol 37:795–807

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gouinguené S, Degen T, Turlings TCJ (2001) Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology 11:9–16

    Article  Google Scholar 

  • Gouinguené S, Pickett JA, Wadhams LJ, Birkett MA, Turlings TCJ (2005) Antennal electrophysiological responses of three parasitic wasps to caterpillar-induced volatiles from maize (Zea mays mays), cotton (Gossypium herbaceum), and cowpea (Vigna unguiculata). J Chem Ecol 31:1023–1038

    Article  PubMed  Google Scholar 

  • Heaney RK, Fenwick GR, Mithen RF, Lewis BG (1987) Glucosinolates of wild and cultivated Brassica species. Phytochemistry 26:1969–1973

    Article  Google Scholar 

  • Hill DS (1987) Agricultural insect pests of temperate regions and their control. Cambridge University Press, New York

    Google Scholar 

  • Hoballah ME, Turlings TCJ (2005) The role of fresh versus old leaf damage in the attraction of parasitic wasps to herbivore-induced maize volatiles. J Chem Ecol 31:2003–2018

    Article  PubMed  CAS  Google Scholar 

  • Hoballah ME, Degen T, Bergvinson D, Savidan A, Tamò C, Turlings TCJ (2004) Occurrence and direct control potential of parasitoids and predators of the fall armyworm (Lepidoptera: Noctuidae) on maize in the subtropical lowlands of Mexico. Agric For Entomol 6:83–88

    Article  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  PubMed  CAS  Google Scholar 

  • Iltis HH (2000) Homeotic sexual translocations and the origin of maize (Zea mays, Poaceae): a new look at an old problem. Econ Bot 54:7–42

    Article  Google Scholar 

  • Iltis HH, Benz BF (2000) Zea nicaraguensis (Poaceae), a new teosinte from Pacific coastal Nicaragua. Novon 10:382–390

    Article  Google Scholar 

  • Iltis HH, Doebley JF (1980) Taxonomy of Zea (Gramineae). II. Subspecific categories in the Zea mays complex and a generic synopsis. Am J Bot 67:994–1004

    Article  Google Scholar 

  • Jofre y Garfias AE, Artavia Mata M, Ibarra Rendón JE, Álvarez Morales RA (2010) Maíz y teocintle. Compartiendo insectos en Lázaro Cárdenas, Erongarícuaro. In: Seefoó Luján JL, Keilbach Baer NM (eds) Ciencia y paciencia campesina. El maíz en Michoacán. El Colegio de Michoacán: Gobierno del Estado de Michoacán—Secretaría de Desarrollo Rural, Zamora, Michoacán, pp 41–55

  • Johns T, Alonso JG (1990) Glycoalkaloid change during the domestication of the potato, Solanum Section Petota. Euphytica 50:203–210

    Article  CAS  Google Scholar 

  • Jourdie V, Alvarez N, Turlings TCJ (2008) Identification of seven species of hymenopteran parasitoids of Spodoptera frugiperda, using polymerase chain reaction amplification and restriction enzyme digestion. Agric For Entomol 10:129–136

    Article  Google Scholar 

  • Köhler A, Maag D, Veyrat N, Glauser G, Wolfender J-L, Turlings TCJ, Erb M (2015) Within-plant distribution of 1,4-benzoxazin-3-ones contributes to herbivore niche differentiation in maize. Plant Cell Environ 38:1081–1093

    Article  PubMed  Google Scholar 

  • Köllner TG, Held M, Lenk C, Hiltpold I, Turlings TCJ, Gershenzon J, Degenhardt J (2008) A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:482–494

    Article  PubMed  PubMed Central  Google Scholar 

  • Luginbill P (1928) The fall armyworm. USDA Tech Bull 34:1–91

    Google Scholar 

  • Maag D, Dalvit C, Thevenet D, Köhler A, Wouters FC, Vassão DG, Gershenzon J, Wolfender J-L, Turlings TCJ, Erb M, Glauser G (2014) 3-β-d-Glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc) is an insect detoxification product of maize 1,4-benzoxazin-3-ones. Phytochemistry 102:97–105

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sánchez-G J, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Molina-Ochoa J, Carpenter JE, Lezama-Gutiérrez R, Foster JE, González-Ramírez M, Angel-Sahagún CA, Farías-Larios J (2004) Natural distribution of hymenopteran parasitoids of Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae in Mexico. Fla Entomol 87:461–472

    Article  Google Scholar 

  • Mondragón-Pichardo J, Vibrans H (2005) Ethnobotany of the Balsas teosinte. Maydica 50:123–128

    Google Scholar 

  • Mutyambai DM, Bruce TJA, Midega CAO, Woodcock CM, Caulfield JC, Van Den Berg J, Pickett JA, Khan ZR (2015) Responses of parasitoids to volatiles induced by Chilo partellus oviposition on teosinte, a wild ancestor of maize. J Chem Ecol 41:323–329

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nee M (1990) The domestication of Cucurbita (Cucurbitaceae). Econ Bot 44:56–68

    Article  Google Scholar 

  • Ortega A (1987) Insect pests of maize: a guide for field identification. CIMMYT, Mexico City

    Google Scholar 

  • Paris HS (1989) Historical records, origins, and development of the edible cultivar groups of Cucurbita pepo (Cucurbitaceae). Econ Bot 43:423–443

    Article  Google Scholar 

  • Powell W, Pennacchio F, Poppy GM, Tremblay E (1998) Strategies involved in the location of hosts by the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae). Biol Control 11:104–112

    Article  Google Scholar 

  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Saona C, Vorsa N, Singh AP, Johnson-Cicalese J, Szendrei Z, Mescher MC, Frost CJ (2011) Tracing the history of plant traits under domestication in cranberries: potential consequences on anti-herbivore defences. J Exp Bot 62:2633–2644

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal JP, Dirzo R (1997) Effects of life history, domestication and agronomic selection on plant defence against insects: evidence from maizes and wild relatives. Evol Ecol 11:337–355

    Article  Google Scholar 

  • Sánchez González JJ, Ruiz Corral JA (1995) Teosinte distribution in Mexico. In: Serratos JA, Willcox MC, Castillo F (eds) Proceedings of a forum—gene flow among maize landraces, improved maize varieties, and teosinte: implications for transgenic maize. CIMMYT, Mexico City, pp 18–39

    Google Scholar 

  • Sánchez González JJ, De La Cruz-L L, Vidal-M VA, Ron-P J, Taba S, Santacruz-Ruvalcaba F, Sood S, Holland JB, Ruíz-C JA, Carvajal S, Aragón-C F, Chávez-T VH, Morales-R MM, Barba-González R (2011) Three new teosintes (Zea spp., Poaceae) from Mexico. Am J Bot 98:1537–1548

    Article  Google Scholar 

  • Sobhy IS, Erb M, Sarhan AA, El-Husseini MM, Mandour NS, Turlings TCJ (2012) Less is more: treatment with BTH and laminarin reduces herbivore-induced volatile emissions in maize but increases parasitoid attraction. J Chem Ecol 38:348–360

    Article  PubMed  CAS  Google Scholar 

  • Steffey KL, Rice ME, All J, Andow DA, Gray ME, Van Duyn JW (1999) Handbook of corn insects. Entomological Society of America, Lanham

    Google Scholar 

  • Steiner S, Steidle JLM, Ruther J (2007) Host-associated kairomones used for habitat orientation in the parasitoid Lariophagus distinguendus (Hymenoptera: Pteromalidae). J Stored Prod Res 43:587–593

    Article  CAS  Google Scholar 

  • Takahashi CG, Kalns LL, Bernal JS (2012) Plant defense against fall armyworm in micro-sympatric maize (Zea mays ssp. mays) and Balsas teosinte (Zea mays ssp. parviglumis). Entomol Exp Appl 145:191–200

    Article  Google Scholar 

  • Tamiru A, Bruce TJA, Woodcock CM, Caulfield JC, Midega CAO, Ogol CKPO, Mayon P, Birkett MA, Pickett JA, Khan ZR (2011) Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol Lett 14:1075–1083

    Article  PubMed  Google Scholar 

  • Tamò C, Ricard I, Held M, Davison AC, Turlings TCJ (2006a) A comparison of naïve and conditioned responses of three generalist endoparasitoids of lepidopteran larvae to host-induced plant odours. Anim Biol 56:205–220

    Article  Google Scholar 

  • Tamò C, Roelfstra L-L, Guillaume S, Turlings TCJ (2006b) Odour-mediated long-range avoidance of interspecific competition by a solitary endoparasitoid: a time-saving foraging strategy. J Anim Ecol 75:1091–1099

    Article  PubMed  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Ton J, D’Alessandro M, Jourdie V, Jakab G, Karlen D, Held M, Mauch-Mani B, Turlings TCJ (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26

    Article  PubMed  CAS  Google Scholar 

  • Turlings TCJ, Ton J (2006) Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr Opin Plant Biol 9:421–427

    Article  PubMed  Google Scholar 

  • Turlings TCJ, Wäckers F (2004) Recruitment of predators and parasitoids by herbivore-injured plants. In: Cardé RT, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 21–75

    Chapter  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253

    Article  PubMed  CAS  Google Scholar 

  • Turlings TCJ, McCall PJ, Alborn HT, Tumlinson JH (1993) An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J Chem Ecol 19:411–425

    Article  PubMed  CAS  Google Scholar 

  • Turlings TCJ, Lengwiler UB, Bernasconi ML, Wechsler D (1998) Timing of induced volatile emissions in maize seedlings. Planta 207:146–152

    Article  CAS  Google Scholar 

  • Turlings TCJ, Davison AC, Tamò C (2004) A six-arm olfactometer permitting simultaneous observation of insect attraction and odour trapping. Physiol Entomol 29:45–55

    Article  Google Scholar 

  • Von Mérey GE, Veyrat N, De Lange E, Degen T, Mahuku G, López Valdez R, Turlings TCJ, D’Alessandro M (2012) Minor effects of two elicitors of insect and pathogen resistance on volatile emissions and parasitism of Spodoptera frugiperda in Mexican maize fields. Biol Control 60:7–15

    Article  Google Scholar 

  • Walters D, Heil M (2007) Costs and trade-offs associated with induced resistance. Physiol Mol Plant Pathol 71:3–17

    Article  CAS  Google Scholar 

  • Wang X-G, Nadel H, Johnson MW, Daane KM, Hoelmer K, Walton VM, Pickett CH, Sime KR (2009) Crop domestication relaxes both top-down and bottom-up effects on a specialist herbivore. Basic Appl Ecol 10:216–227

    Article  Google Scholar 

  • Warton DI, Hui FKC (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10

    Article  PubMed  Google Scholar 

  • Welter SC, Steggall JW (1993) Contrasting the tolerance of wild and domesticated tomatoes to herbivory: agroecological implications. Ecol Appl 3:271–278

    Article  Google Scholar 

  • Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theoret Appl Genet 75:225–233

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Matthias Held for advice on statistical analysis and Thomas Degen and Yury Alvear Smith for technical assistance. We thank the USDA-ARS (United States Department of Agriculture—Agricultural Research Service) for providing us with teosinte seeds and Syngenta (Stein, Switzerland) for the weekly shipments of S. littoralis eggs. We are grateful to Yves Borcard and students of the University of Neuchâtel for parasitoid rearing. The picture in Online Resource 1 was made by Matthias Held and Fig. 1 was created by Thomas Degen (http://www.thomas-degen.ch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted C. J. Turlings.

Additional information

Handling Editor: Michael Heethoff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 150 kb)

Supplementary material 2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lange, E.S., Farnier, K., Gaudillat, B. et al. Comparing the attraction of two parasitoids to herbivore-induced volatiles of maize and its wild ancestors, the teosintes. Chemoecology 26, 33–44 (2016). https://doi.org/10.1007/s00049-015-0205-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-015-0205-6

Keywords

Navigation