Skip to main content

Advertisement

Log in

Semi-synthesis and cytotoxicity evaluation of pyrimidine, thiazole, and indole analogues of argentatins A–C from guayule (Parthenium argentatum) resin

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Argentatins A–C (1–3), the major cycloartane-type triterpenoids of guayule resin, a byproduct of commercial rubber production, were converted into their pyrimidine (7–12), thiazole (13–15), and indole (16–18) analogues by a molecular hybridization approach. The cytotoxic activities of these fused heterocyclic analogues 7–18 were compared with those of argentatins A–C (1–3) against a panel of three sentinel human cancer cell lines [NCI-H460 (non-small cell lung), MCF-7 (breast adenocarcinoma), and SF-268 (central nervous system glioma)], and normal human fibroblast (WI-38) cells. The cytotoxicity data suggest that the pyrimidine analogues 7 and 8 (derived from 1), 9 and 10 (derived from 2), and 12 (derived from 3) had significantly enhanced activity compared to the parent compounds or their thiazole (13–15) and indole (16–18) analogues. These findings indicate that triterpenoid constituents of guayule resin may be exploited to obtain value-added products with potential applications in anticancer drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Butler MS. The role of natural product chemistry in drug discovery. J Nat Prod. 2004;67:2141–53. https://doi.org/10.1021/np040106y

    Article  CAS  PubMed  Google Scholar 

  2. Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629–61. https://doi.org/10.1021/acs.jnatprod.5b01055

    Article  CAS  PubMed  Google Scholar 

  3. Kingston DGI. Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod. 2011;74:496–511. https://doi.org/10.1021/np100550t

    Article  CAS  PubMed  Google Scholar 

  4. Butler MS. Natural products to drugs: natural product derived compounds in clinical trials. Nat Prod Rep. 2005;22:475–516. https://doi.org/10.1039/B514294F

    Article  Google Scholar 

  5. Newman DJ. Natural products as leads to potential drugs: an old process or the new hope for drug discovery. J Med Chem. 2008;51:2589–99. https://doi.org/10.1021/jm0704090

    Article  CAS  PubMed  Google Scholar 

  6. Salvador JAR, Moreira VM, Gonçalves BMF, Leal AS, Jing Y. Ursane-type pentacyclic triterpenoids as useful platforms to discover anticancer drugs. Nat Prod Rep. 2012;29:1463–79. https://doi.org/10.1039/C2NP20060K

    Article  CAS  PubMed  Google Scholar 

  7. Petronelli A, Pannitteri G, Testa U. Triterpenoids as new promising anticancer drugs. Anticancer Drugs. 2009;20:880–92. https://doi.org/10.1097/CAD.0b013e328330fd90

    Article  CAS  PubMed  Google Scholar 

  8. Rahim A, Saito Y, Miyake K, Goto M, Chen CH, Alam G, et al. Kleinhospitine E and cycloartane triterpenoids from Kleinhovia hospita. J Nat Prod. 2018;81:1619–27. https://doi.org/10.1021/acs.jnatprod.8b00211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Banjar MFS, Mohamed GA, Shehata IA, Abdallah HM, Shatid AA, Alfaifid MY, et al. Cycloschimperols A and B, new cytotoxic cycloartane triterpenoids from Euphorbia schimperi. Phytochem Lett. 2019;32:90–95. https://doi.org/10.1016/j.phytol.2019.05.008

    Article  CAS  Google Scholar 

  10. Vivar AR, Vázquez MM, Matsubara C, Sánchez GP, Nathan PJ. Triterpenes in Parthenium argentatum, structures of argentatins C and D. Phytochemistry 1990;29:915–8. https://doi.org/10.1016/0031-9422(90)80045-I

    Article  Google Scholar 

  11. Komoroski RA, Gregg EC, Shockcor JP, Geckle JM. Identification of guayule triterpenes by two dimensional and multipulse NMR techniques. Magn Reson Chem. 1986;24:534–43. https://doi.org/10.1002/mrc.126024061

    Article  Google Scholar 

  12. Schloman WW, Hively RA, Krishen A, Andrews AM. Guayule byproduct evaluation: extract characterization. J Agric Food Chem. 1983;31:873–6. https://doi.org/10.1021/jf00118a050

    Article  CAS  Google Scholar 

  13. Piana F, Ciulu M, Piné RQ, Sanna G, Carretero AS, Spano N, et al. Simple and rapid procedures for the extraction of bioactive compounds from guayule leaves. Ind Crops Prod. 2018;116:162–9. https://doi.org/10.1016/j.indcrop.2018.02.057

    Article  CAS  Google Scholar 

  14. Maatooq GT, Gamal AAHE, Furbacher TR, Cornuelle TL, Hoffmann JJ. Triterpenoids from Parthenium argentatum x P. tomentosa. Phytochemistry. 2002;60:755–60. https://doi.org/10.1016/S0031-9422(02)00166-8

    Article  CAS  PubMed  Google Scholar 

  15. Martinez VM, Martinez R, Perez GE, Diaz M, Sanchez H. Antimicrobial properties of argentatin A, isolated from Parthenium argentatum. Fitoterapia 1994;65:371–2.

    Google Scholar 

  16. Flores EA, Franco AEB, López PG, Zavaleta LR, Marure RL, Vázquez MM. Argentatin B inhibits proliferation of prostate and colon cancer cells by inducing cell senescence. Molecules. 2015;20:21125–37. https://doi.org/10.3390/molecules201219757

    Article  CAS  Google Scholar 

  17. Calzada L, Salazar EL, Tellez J, Martinez M, Martinez R. Effect of tetracyclic triterpenes (argentatins A, B and D) on the estradiol receptor of hormone-dependent tumors of human breast. Med Sci Res. 1995;23(12):815–6.

    CAS  Google Scholar 

  18. Delgado HP, Apan TR, Vázquez MM. Synthesis of argentatin A derivatives as growth inhibitors of human cancer cell lines in vitro. Bioorg Med Chem Lett. 2005;15:1005–8. https://doi.org/10.1016/j.bmcl.2004.12.038

    Article  CAS  Google Scholar 

  19. Delgado HP, Compadre CM, Apan TR, Fambuena MJM, Compadre RL, Wegman PO, et al. Synthesis and comparative molecular field analysis (CoMFA) of argentatin B derivatives as growth inhibitors of human cancer cell lines. Bioorg Med Chem. 2006;14:1889–901. https://doi.org/10.1016/j.bmc.2005.10.038

    Article  CAS  Google Scholar 

  20. Singh R, Choudin A. An overview of biological importance of pyrimidines. World J Pharm Pharm Sci. 2014;3(12):574–97.

    Google Scholar 

  21. Mallavadhan UV, Chandrashekhar M, Nayak VL, Ramakrishna S. Synthesis and anticancer activity of novel fused pyrimidine hybrids of myrrhanone C, a bicyclic triterpene of Commiphora mukul gum resin. Mol divers. 2015;19:745–57. https://doi.org/10.1007/s11030-015-9621-3

    Article  CAS  Google Scholar 

  22. Chandrashekhar M, Sagarika G, Ramakrishna S, Uppuluri VM. Synthesis and anti-inflammatory activity of some novel pyrimidine hybrids of myrrhanone A, a bicyclic triterpene of Commiphora mukul gum resin. Monatsh Chem. 2017;148:2183–93. https://doi.org/10.1007/s00706-017-2024-7

    Article  CAS  Google Scholar 

  23. Nevagi RJ. Biological and medicinal significance of 2-aminothiazoles. Der Pharm Lett. 2014;6(5):134–50. https://www.scholarsresearchlibrary.com/articles/biological-and-medicinal-significance-of-2aminothiazoles.pdf

    Google Scholar 

  24. Borková L, Frydrych I, Jakubcová N, Adámek R, Lišková B, Gurská S, et al. Synthesis and biological evaluation of triterpenoid thiazoles derived from betulonic acid, dihydrobetulonic acid, and ursonic acid. Eur J Med Chem. 2020;185:111806 https://doi.org/10.1016/j.ejmech.2019.111806

    Article  CAS  PubMed  Google Scholar 

  25. Sayed MTE, Hamdy NA, Osman DA, Ahmed KM. Indoles as anticancer agents. Adv Mod Oncol Res. 2015;1:20–35. https://doi.org/10.18282/amor.v1.i1.12

    Article  CAS  Google Scholar 

  26. Bosquesi PS, Melo TRF, Vizioli EO, dos Santos JL, Chung MC. Anti-inflammatory drug design using a molecular hybridization approach. Pharmaceuticals. 2011;4:1450–74. https://doi.org/10.3390/ph4111450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ren Y, Ma Y, Cherukupalli S, Tavis JE, Menéndes-Arias L, Liu X, et al. Discovery and optimization of benzenesulfonamides-based hepatitis B virus capsid modulators via contemporary medicinal chemistry strategies. Eur J Med Chem. 2020;206:112714 https://doi.org/10.1016/j.ejmech.2020.112714

    Article  CAS  PubMed  Google Scholar 

  28. Xu YM, Madasu C, Liu MX, Wijeratne EMK, Dierig D, White B, et al. Cycloartane and lanostane-type triterpenoids from the resin of Parthenium argentatum AZ-2, a byproduct of guayule rubber production. ACS Omega. 2021;6:15484–98. https://doi.org/10.1021/acsomega.1c01714

    Article  CAS  Google Scholar 

  29. Baily WF, Ovaska TV. Allylic proton-proton coupling in stereodefined alkylidenecyclobutanes and alkylidenecyclopentanes. J Mex Chem Soc. 2009;53:139–42. http://www.scielo.org.mx/pdf/jmcs/v53n3/v53n3a10.pdf

    Google Scholar 

  30. Kiss MA, Peřina M, Bazgier V, May NV, Baji A, Jorda R, et al. Synthesis of dihydrotestosterone derivatives modified in the A-ring with (hetero)arylidene, pyrazolo[1,5-a]pyrimidine and triazolo[1,5-a]pyrimidine moieties and their targeting of the androgen receptor in prostate cancer. J Steroid Biochem Mol Biol. 2021; 105904. https://doi.org/10.1016/j.jsbmb.2021.105904

  31. Barlin GB, Brown DJ, Fenn MD. Carbon-13 nuclear magnetic resonance spectra in the identification of N-, O- or S-methyl derivatives of some tautomeric hydroxy and mercapto nitrogen heterocycles. Aust J Chem. 1984;37:2391–5. https://doi.org/10.1071/CH9842391

    Article  CAS  Google Scholar 

  32. Baji Á, Kiss T, Wölfling J, Kovács D, Igaz N, Gopisetty MK, et al. Multicomponent access to androstano-arylpyrimidines under microwave conditions and evaluation of their anti-cancer activity in vitro. J Steroid Biochem Mol Biol. 2017;172:79–88. https://doi.org/10.1016/j.jsbmb.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  33. Wu Q, Wang R, Shi Y, Li W, Li M, Chen P, et al. Synthesis and biological evaluation of panaxatriol derivatives against myocardial ischemia/reperfusion injury in the rat. Eur J Med Chem. 2020;185:111729 https://doi.org/10.1016/j.ejmech.2019.111729

    Article  CAS  PubMed  Google Scholar 

  34. Wijeratne EMK, Bashyal BP, Liu MX, Rocha DD, Gunaherath GMKB, U’Ren JM, et al. ent-kaurane diterpenoids from endolichenic fungal strains Geopyxis aff. majalis and Geopyxis sp. AZ0066: Structure-activity relationships of geopyxins and their analogues. J Nat Prod. 2012;75:361–9. https://doi.org/10.1021/np200769q

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the USDA-NIFA (Grant # 2017-68005-26867; Kimberly Ogden, PI) and Hatch projects ARZT-1005072 (AALG) and ARZT-1361640-H12-224 (IM), and the University of Arizona College of Agriculture. Any opinions, findings, conclusions, or recommendations expressed in this publication/work are those of the authors and do not necessarily reflect the view of the U.S. Department of Agriculture. We thank Dr. Lijiang Xuan, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, P. R. China for HRMS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Leslie Gunatilaka.

Ethics declarations

Conflict of interest

IM has disclosed financial interests in TEVA Pharmaceuticals Hungary and the University of Debrecen, Hungary, which are unrelated to the subject of the research presented here. All other authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madasu, C., Xu, YM., Wijeratne, E.M.K. et al. Semi-synthesis and cytotoxicity evaluation of pyrimidine, thiazole, and indole analogues of argentatins A–C from guayule (Parthenium argentatum) resin. Med Chem Res 31, 1088–1098 (2022). https://doi.org/10.1007/s00044-021-02835-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02835-1

Keywords

Navigation