Skip to main content
Log in

Synthesis, structure-activity relationship studies and evaluation of a TLR 3/8/9 agonist and its analogues

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A comprehensive SAR study of a putative TLR 3/8/9 agonist was conducted. Despite the excitement surrounding the potential of the first small molecule TLR3 agonist with a compound that additionally displayed agonist activity for TLR8 and TLR9, compound 1 displayed disappointing activity in our hands, failing to match the potency (EC50) reported and displaying only a low efficacy for the extent of stimulated NF-κB activation and release. The evaluation of >75 analogs of 1, many of which constitute minor modifications in the structure, failed to identify any that displayed significant activity and none that exceeded the modest activity found for 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Scheme 3

Similar content being viewed by others

References

  1. Ferrandon D, Imler JL, Hoffmann JA. Sensing infection in Drosophila: Toll and beyond. Semin Immunol. 2004;16:43–53.

    Article  CAS  Google Scholar 

  2. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

    Article  CAS  Google Scholar 

  3. Akira S, Uematsu S, Takuechi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

    Article  CAS  Google Scholar 

  4. Moresco EM, LaVine D, Beutler B. Toll-like receptors. Curr Biol. 2011;21:R488–R493.

    Article  CAS  Google Scholar 

  5. Kang JY, Lee JO. Structural biology of the Toll-like receptor family. Annu Rev Biochem. 2011;809:917–941.

    Article  Google Scholar 

  6. Beutler B. Neo-ligands for innate immune receptors and the etiology of sterile inflammatory disease. Immunol Rev. 2007;220:113–128.

    Article  CAS  Google Scholar 

  7. Kanzler H, Barrat FJ, Hessel EM, Coffman RL. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med. 2007;13:552–559.

    Article  CAS  Google Scholar 

  8. Hennessy EJ, Parker AE, O’Neill LA. Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discovery. 2010;9:293–307.

    Article  CAS  Google Scholar 

  9. Connolly DJ, O’Neill LA. New developments in Toll-like receptor targeted therapeutics. Curr Opin Pharmacol. 2012;12:510–518.

    Article  CAS  Google Scholar 

  10. Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer. 2009;9:57–63.

    Article  CAS  Google Scholar 

  11. Hoebe K, Jiang Z, Georgel P, Tabeta K, Janssen E, Du X, Beutler B. TLR signaling pathways: opportunities for activation and blockade in pursuit of therapy. Curr Pharmaceut Des. 2006;12:4123–4134.

    Article  CAS  Google Scholar 

  12. Czarniecki M. Small molecule modulators of Toll-like receptors. J Med Chem. 2008;51:6621–6626.

    Article  CAS  Google Scholar 

  13. Meyer T, Stockfleth E. Clinical investigations of Toll-like receptor agonists. Expert Opin Invest Drugs. 2008;17:1051–1065.

    Article  CAS  Google Scholar 

  14. Wang X, Smith C, Yin H. Targeting Toll-like receptors with small molecule agents. Chem Soc Rev. 2013;42:4859–4866.

    Article  CAS  Google Scholar 

  15. Peri F, Calabrese V. Toll-like receptor 4 (TLR4) modulation by synthetic and natural compounds: An update. J Med Chem. 2014;57:3612–3622.

    Article  CAS  Google Scholar 

  16. Lu BL, Williams GM, Brimble MA. TLR2 Agonists and their structure–activity relationships. Org Biomol Chem. 2020;18:5073–5094.

    Article  CAS  Google Scholar 

  17. Federico S, Pozzetti L, Papa A, Carullo G, Gemma S, Butini S, Campiani G, Relitti N. Modulation of the innate immune response by targeting Toll-like receptors: a perspective on their agonists and antagonists. J Med Chem. 2020;63:13466–13513.

    Article  CAS  Google Scholar 

  18. Hajishangallis G, Lambris JD. More than complementing Tolls: complement–Toll-like receptor synergy and crosstalk in innate immunity and inflammation. Immunol Rev. 2016;274:233–244.

    Article  Google Scholar 

  19. Zhang L, Dewan V, Yin H. Discovery of small molecules as multi-Toll-like receptor agonists with proinflammatory and anticancer activities. J Med Chem. 2017;60:5029–5044.

    Article  CAS  Google Scholar 

  20. Wang Y, Su L, Morin MD, Jones BT, Whitby LR, Surakattula MM, Huang H, Shi H, Choi JH, Wang KW, Moresco EM, Berger M, Zhan X, Zhang H, Boger DL, Beutler B. TLR4/MD-2 activation by a synthetic agonist with no similarity to LPS. Proc Natl Acad Sci USA. 2016;113:E884–E893.

    Article  CAS  Google Scholar 

  21. Morin MD, Wang Y, Jones BT, Su L, Surakattula MM, Berger M, Huang H, Beutler EK, Zhang H, Beutler B, Boger DL. Discovery and structure-activity relationships of the neoseptins: a new class of Toll-like receptor-4 (TLR4) agonists. J Med Chem. 2016;59:4812–4830.

    Article  CAS  Google Scholar 

  22. Morin MD, Wang Y, Jones BT, Mifune Y, Su L, Shi H, Moresco EMY, Zhang H, Beutler B, Boger DL. Diprovocims: a new and exceptionally potent class of toll-like receptor agonists. J Am Chem Soc. 2018;140:14440–14454.

    Article  CAS  Google Scholar 

  23. Su L, Wang Y, Wang J, Mifune Y, Morin MD, Jones BT, Moresco EMY, Boger DL, Beutler B, Zhang H. Structural basis of TLR2/TLR1 activation by the synthetic agonist diprovocim. J Med Chem. 2019;62:2938–2949.

    Article  CAS  Google Scholar 

  24. Wang Y, Su L, Morin MD, Jones BT, Mifune Y, Shi H, Wang K, Zhan X, Liu A, Wang J, Li X, Tang M, Ludwig S, Hildebrand S, Zhou K, Siegwart D, Moresco EMY, Zhang H, Boger DL, Beutler B. Adjuvant effect of the novel TLR1/2 agonist Diprovocim synergizes with anti-PD-L1 to eliminate melanoma in mice. Proc Natl Acad Sci USA. 2018;115:E8698–E8706.

    Article  CAS  Google Scholar 

  25. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413:732–738.

    Article  CAS  Google Scholar 

  26. Ohto U, Ishida H, Shibata T, Sato R, Miyake K, Shimizu T. Toll-like receptor 9 contains two DNA binding sites that function cooperatively to promote receptor dimerization and activation. Immunity. 2018;48:649–658.e4.

    Article  CAS  Google Scholar 

  27. Choe J, Kelker MS, Wilson IA. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science. 2005;309:581–585.

    Article  CAS  Google Scholar 

  28. Bissantz C, Kuhn B, Stahl M. A medicinal chemist’s guide to molecular interactions. J Med Chem. 2010;53:5061–5084.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of NIH (CA042056, DLB) and Bristol Myers Squibb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale L. Boger.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Dedication: This article is dedicated to Professor Gary Grunewald, a treasured longtime friend and early colleague alongside which I had the pleasure of working for many years.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Kankanamalage, A.C.G., Zhang, Q. et al. Synthesis, structure-activity relationship studies and evaluation of a TLR 3/8/9 agonist and its analogues. Med Chem Res 30, 1377–1385 (2021). https://doi.org/10.1007/s00044-021-02736-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02736-3

Keywords

Navigation