Skip to main content

Advertisement

Log in

Pyrimidine and fused pyrimidine derivatives as promising protein kinase inhibitors for cancer treatment

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Pyrimidine ring and its fused derivatives including pyrazolo[3,4-d]pyrimidine, pyrido[2,3-d]pyrimidine, quinazoline, and furo[2,3-d]pyrimidine compounds had received much interest due to their diverse biological potential, in addition fused pyrimidine are considered as bioisosteres with purines and consequently many pyrimidine and fused pyrimidine derivatives as pyrazolo[3,4-d]pyrimidine, pyrido[2,3-d]pyrimidine, quinazoline, and furo[2,3-d]pyrimidine possessed promising anticancer activity. These pyrimidine derivatives exerted their anticancer potential through different action mechanisms; one of these mechanisms is inhibiting protein kinases that are considered as essential enzymes for controlling cell growth, differentiation, migration, and metabolism. The present review sheds the light on the anticancer significance of some privileged pyrimidine and fused pyrimidine derivatives via selective inhibition of protein kinases, revealing structure-activity relationships and some synthetic pathways used for constructing these scaffolds in an attempt to assist medicinal chemists to construct novel pyrimidines with higher selectivity as anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Scheme 3
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Scheme 4
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Scheme 5
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Hill RP. Identifying cancer stem cells in solid tumors: case not proven. Cancer Res. 2006;66:1891–6.

    CAS  PubMed  Google Scholar 

  2. Haddow S, Fowlis D, Parkinson K, Akhurst R, Balmain A. Loss of growth control by TGF-beta occurs at a late stage of mouse skin carcinogenesis and is independent of ras gene activation. Oncogene. 1991;6:1465–70.

    CAS  PubMed  Google Scholar 

  3. Sozzi G, Pastorino U, Moiraghi L, Tagliabue E, Pezzella F, Ghirelli C, et al. Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res. 1998;58:5032–37.

    CAS  PubMed  Google Scholar 

  4. Abdellatif KR, Abdelall EK, Abdelgawad MA, Ahmed RR, Bakr RB. Synthesis, docking study and antitumor evaluation of certain newly synthesized pyrazolo [3, 4-d] pyrimidine derivatives. Org Chem.: An Indian Journal 2014;10:157–67.

  5. Abdelgawad MA, Bakr RB, Omar HA. Design, synthesis and biological evaluation of some novel benzothiazole/benzoxazole and/or benzimidazole derivatives incorporating a pyrazole scaffold as antiproliferative agents. Bioorg Chem. 2017;74:82–90.

    CAS  PubMed  Google Scholar 

  6. Bakr RB, Abdelall EK, Abdel-Hamid MK, Kandeel MM. Design and synthesis of new EGFR-tyrosine kinase inhibitors containing pyrazolo [3, 4-d] pyrimidine cores as anticancer agents. Bull Pharm Sci Assiut Univ. 2012;35:1–16.

    Google Scholar 

  7. Klagsbrun M, Knighton D, Folkman J. Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res. 1976;36:110–4.

    CAS  PubMed  Google Scholar 

  8. Thurston DE. Chemistry and pharmacology of anticancer drugs. United States: CRC Press; 2006.

  9. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.

    CAS  PubMed  Google Scholar 

  10. Mundy GR. Mechanisms of bone metastasis. Cancer. 1997;80:1546–56.

    CAS  PubMed  Google Scholar 

  11. Brownstein MH, Helwig EB. Spread of tumors to the skin. Arch Dermatol. 1973;107:80–6.

    CAS  PubMed  Google Scholar 

  12. B Bakr R, BM Mehany A, RA Abdellatif K. Synthesis, EGFR inhibition and anti-cancer activity of new 3, 6-dimethyl-1-phenyl-4-(substituted-methoxy) pyrazolo [3, 4-d] pyrimidine derivatives. Anti-Cancer Agents Med Chem. 2017;17:1389–400.

    Google Scholar 

  13. Wu H-C, Chang D-K, Huang C-T. Targeted therapy for cancer. J Cancer Mol. 2006;2:57–66.

    CAS  Google Scholar 

  14. Hall JJ, Loggie BW, Shen P, Beamer S, Case LD, McQuellon R, et al. Cytoreductive surgery with intraperitoneal hyperthermic chemotherapy for advanced gastric cancer. J Gastrointest Surg. 2004;8:454–63.

    PubMed  Google Scholar 

  15. Chabner BA, Roberts TG. Chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5:65–72.

    CAS  PubMed  Google Scholar 

  16. Abdellatif KR, Abdelall EK, Abdelgawad MA, Ahmed RR, Bakr RB. Synthesis and anticancer activity of some new pyrazolo [3, 4-d] pyrimidin-4-one derivatives. Molecules. 2014;19:3297–309.

    PubMed  PubMed Central  Google Scholar 

  17. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579.

    CAS  PubMed  Google Scholar 

  18. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Investig. 2006;116:2827–27.

    CAS  Google Scholar 

  19. Dachs GU, Dougherty GJ, Stratford IJ, Chaplin DJ. Targeting gene therapy to cancer: a review. Oncol Res. 1997;9:313–25.

    CAS  PubMed  Google Scholar 

  20. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998;279:377–80.

    CAS  PubMed  Google Scholar 

  21. Escudier B, Michaelson M, Motzer R, Hutson T, Clark J, Lim H, et al. Axitinib versus sorafenib in advanced renal cell carcinoma: subanalyses by prior therapy from a randomised phase III trial. Br J Cancer. 2014;110:2821.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sawyers C. Targeted cancer therapy. Nature. 2004;432:294.

    CAS  PubMed  Google Scholar 

  23. Lavogina D, Enkvist E, Uri A. Bisubstrate inhibitors of protein kinases: from principle to practical applications. ChemMedChem. 2010;5:23–34.

    CAS  PubMed  Google Scholar 

  24. Cheng Y, Zhang Y, McCammon JA. How does the cAMP-dependent protein kinase catalyze the phosphorylation reaction: an ab initio QM/MM study. J Am Chem Soc. 2005;127:1553–62.

    CAS  PubMed  Google Scholar 

  25. Luković E, González-Vera JA, Imperiali B. Recognition-domain focused chemosensors: versatile and efficient reporters of protein kinase activity. J Am Chem Soc. 2008;130:12821–27.

    PubMed  PubMed Central  Google Scholar 

  26. Dissmeyer N, Schnittger A. The age of protein kinases. In: Plant Kinases. Clifton, NJ: Springer; 2011. p. 7–52. https://doi.org/10.1007/978-1-61779-264-9_2.

  27. Braun T, Gautel M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol. 2011;12:349.

    CAS  PubMed  Google Scholar 

  28. Smith DS, Tsai L-H. Cdk5 behind the wheel: a role in trafficking and transport? Trends Cell Biol. 2002;12:28–36.

    PubMed  Google Scholar 

  29. Weishaupt J, Neusch C, Bähr M. Cyclin-dependent kinase 5 (CDK5) and neuronal cell death. Cell Tissue Res. 2003;312:1–8.

    CAS  PubMed  Google Scholar 

  30. Garcia-Echeverria C, Sellers W. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene. 2008;27:5511.

    CAS  PubMed  Google Scholar 

  31. Xu K, Shu H-KG. EGFR activation results in enhanced cyclooxygenase-2 expression through p38 mitogen-activated protein kinase–dependent activation of the SP1/SP3 transcription factors in human gliomas. Cancer Res. 2007;67:6121–9.

    CAS  PubMed  Google Scholar 

  32. Meulenbeld HJ, Mathijssen RH, Verweij J, de Wit R, de Jonge MJ. Danusertib, an aurora kinase inhibitor. Expert Opin Investig Drugs. 2012;21:383–93.

    CAS  PubMed  Google Scholar 

  33. Naula C, Parsons M, Mottram JC. Protein kinases as drug targets in trypanosomes and Leishmania. Biochim Biophys Acta. 2005;1754:151–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9:28.

    PubMed  Google Scholar 

  35. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26:3291.

    CAS  PubMed  Google Scholar 

  36. Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, Evans RJ, et al. Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin cancer Res. 2007;13:1576–83.

    CAS  PubMed  Google Scholar 

  37. Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez MA, et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med. 2010;16:205.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Knight ZA, Lin H, Shokat KM. Targeting the cancer kinome through polypharmacology. Nat Rev Cancer. 2010;10:130.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Traxler P, Furet P. Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacol Ther. 1999;82:195–206.

    CAS  PubMed  Google Scholar 

  40. Paul MK, Mukhopadhyay AK. Tyrosine kinase–role and significance in cancer. Int J Med Sci. 2004;1:101.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu K, Toral-Barza L, Shi C, Zhang W-G, Lucas J, Shor B, et al. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res. 2009;69:6232–40.

    CAS  PubMed  Google Scholar 

  42. Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ, Jones LH, et al. Developing irreversible inhibitors of the protein kinase cysteinome. Chem Biol. 2013;20:146–59.

    PubMed  PubMed Central  Google Scholar 

  43. Akritopoulou-Zanze I, Hajduk PJ. Kinase-targeted libraries: the design and synthesis of novel, potent, and selective kinase inhibitors. Drug Discov Today. 2009;14:291–7.

    CAS  PubMed  Google Scholar 

  44. Cocco MT, Congiu C, Lilliu V, Onnis V. Synthesis and in vitro antitumoral activity of new hydrazinopyrimidine-5-carbonitrile derivatives. Bioorg Med Chem. 2006;14:366–72.

    CAS  PubMed  Google Scholar 

  45. Kassab AE, Gedawy EM. Synthesis and anticancer activity of novel 2-pyridyl hexahyrocyclooctathieno [2, 3-d] pyrimidine derivatives. Eur J Med Chem. 2013;63:224–30.

    CAS  PubMed  Google Scholar 

  46. Hafez HN, El-Gazzar A-RB. Synthesis and antitumor activity of substituted triazolo [4, 3-a] pyrimidin-6-sulfonamide with an incorporated thiazolidinone moiety. Bioorg Med Chem Lett. 2009;19:4143–7.

    CAS  PubMed  Google Scholar 

  47. Lauria A, Patella C, Dattolo G, Almerico AM. Design and synthesis of 4-substituted indolo [3, 2-e][1, 2, 3] triazolo [1, 5-a] pyrimidine derivatives with antitumor activity. J Med Chem. 2008;51:2037–46.

    CAS  PubMed  Google Scholar 

  48. Zhang N, Ayral-Kaloustian S, Nguyen T, Hernandez R, Beyer C. 2-Cyanoaminopyrimidines as a class of antitumor agents that promote tubulin polymerization. Bioorg Med Chem Lett. 2007;17:3003–05.

    CAS  PubMed  Google Scholar 

  49. Abdelgawad MA, Bakr RB, Azouz AA. Novel pyrimidine-pyridine hybrids: Synthesis, cyclooxygenase inhibition, anti-inflammatory activity and ulcerogenic liability. Bioorg Chem. 2018;77:339–48.

    CAS  PubMed  Google Scholar 

  50. Lacbay CM, Mancuso J, Lin Y-S, Bennett N, Götte M, Tsantrizos YS. Modular assembly of purine-like bisphosphonates as inhibitors of HIV-1 reverse transcriptase. J Med Chem. 2014;57:7435–49.

    CAS  PubMed  Google Scholar 

  51. Chauhan M, Kumar R. Medicinal attributes of pyrazolo [3, 4-d] pyrimidines: a review. Bioorg Med Chem. 2013;21:5657–68.

    CAS  PubMed  Google Scholar 

  52. Ismail NS, Ali GM, Ibrahim DA, Elmetwali AM. Medicinal attributes of pyrazolo [1, 5-a] pyrimidine based scaffold derivatives targeting kinases as anticancer agents. Future J Pharm Sci. 2016;2:60–70.

    Google Scholar 

  53. Elrazaz EZ, Serya RA, Ismail NS, El Ella DAA, Abouzid KA. Thieno [2, 3-d] pyrimidine based derivatives as kinase inhibitors and anticancer agents. Future J Pharm Sci. 2015;1:33–41.

    Google Scholar 

  54. Joo YH, Min SU, Lee DH, Suh DH. A case of drug eruption with periorbital edema and exfoliative dermatitis induced by imatinib mesylate (STI571, Gleevec (TM)). Korean. J Dermatol. 2007;45:194–6.

    Google Scholar 

  55. Cozzi P, Mongelli N, Suarato A. Recent anticancer cytotoxic agents. Curr Med Chem-Anti-Cancer Agents. 2004;4:93–121.

    CAS  Google Scholar 

  56. Kantarjian HM, Giles F, Gattermann N, Bhalla K, Alimena G, Palandri F, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome–positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood. 2007;110:3540–6.

    CAS  PubMed  Google Scholar 

  57. White DL, Saunders VA, Dang P, Engler J, Zannettino AC, Cambareri AC, et al. OCT-1–mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood. 2006;108:697–704.

    CAS  PubMed  Google Scholar 

  58. Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362:2260–70.

    CAS  PubMed  Google Scholar 

  59. Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N, et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood. 2006;107:4532–9.

    CAS  PubMed  Google Scholar 

  60. Rix U, Hantschel O, Dürnberger G, Rix LLR, Planyavsky M, Fernbach NV, et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood. 2007;110:4055–63.

    CAS  PubMed  Google Scholar 

  61. Tokarski JS, Newitt JA, Chang CYJ, Cheng JD, Wittekind M, Kiefer SE, et al. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res. 2006;66:5790–7.

    CAS  PubMed  Google Scholar 

  62. Mariaule G, Belmont P. Cyclin-dependent kinase inhibitors as marketed anticancer drugs: where are we now? A short survey. Molecules. 2014;19:14366–82.

    PubMed  PubMed Central  Google Scholar 

  63. Yang EH, Yun JI, Latif M, Lee HJ, Yun C-S, Lee K, et al. New pyrimidine derivatives possessing ALK inhibitory activities. Bull Korean Chem Soc. 2013;34:3129–32.

    CAS  Google Scholar 

  64. Xu Y, Hao S-Y, Zhang X-J, Li W-B, Qiao X-P, Wang Z-X, et al. Discovery of novel 2, 4-disubstituted pyrimidines as Aurora kinase inhibitors. Bioorg Med Chem Lett. 2020;30:126885.

    CAS  PubMed  Google Scholar 

  65. Shu L, Chen C, Huan X, Huang H, Wang M, Zhang J, et al. Design, synthesis, and pharmacological evaluation of 4-or 6-phenyl-pyrimidine derivatives as novel and selective Janus kinase 3 inhibitors. Eur J Med Chem. 2020;191:112148.

    PubMed  Google Scholar 

  66. Chikhale R, Thorat S, Choudhary RK, Gadewal N, Khedekar P. Design, synthesis and anticancer studies of novel aminobenzazolyl pyrimidines as tyrosine kinase inhibitors. Bioorg Chem. 2018;77:84–100.

    CAS  PubMed  Google Scholar 

  67. Bennett MJ, Zehnder LR, Ninkovic S, Kung P-P, Meng JJ, Buwen H. 2-amino pyrimidine compounds. Google Patents; 2010.

  68. Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T, et al. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med. 2004;10:262–7.

    CAS  PubMed  Google Scholar 

  69. Katsha A, Belkhiri A, Goff L, El-Rifai W. Aurora kinase A in gastrointestinal cancers: time to target. Mol Cancer. 2015;14:106.

    PubMed  PubMed Central  Google Scholar 

  70. Luo Y, Deng Y-Q, Wang J, Long Z-J, Tu Z-C, Peng W, et al. Design, synthesis and bioevaluation of N-trisubstituted pyrimidine derivatives as potent aurora A kinase inhibitors. Eur J Med Chem. 2014;78:65–71.

    CAS  PubMed  Google Scholar 

  71. Long L, Luo Y, Hou Z-J, Ma H-J, Long Z-J, Tu Z-C, et al. Synthesis and biological evaluation of aurora kinases inhibitors based on N-trisubstituted pyrimidine scaffold. Eur J Med Chem. 2018;145:805–12.

    CAS  PubMed  Google Scholar 

  72. Lee YH, Park J, Ahn S, Lee Y, Lee J, Shin SY, et al. Design, synthesis, and biological evaluation of polyphenols with 4, 6-diphenylpyrimidin-2-amine derivatives for inhibition of Aurora kinase A. DARU. 2019;27:265–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Oh H, Ozkirimli E, Shah K, Harrison ML, Geahlen RL. Generation of an analog-sensitive Syk tyrosine kinase for the study of signaling dynamics from the B cell antigen receptor. J Biol Chem. 2007;282:33760–8.

    CAS  PubMed  Google Scholar 

  74. Blethrow J, Zhang C, Shokat KM, Weiss EL. Design and use of analog‐sensitive protein kinases. Current Protoc Mol Biol. 2004;66:18.11.1–18.11.19.

  75. Lopez MS, Choy JW, Peters U, Sos ML, Morgan DO, Shokat KM. Staurosporine-derived inhibitors broaden the scope of analog-sensitive kinase technology. J Am Chem Soc. 2013;135:18153–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim DC, Lee YR, Yang B-S, Shin KJ, Kim DJ, Chung BY, et al. Synthesis and biological evaluations of pyrazolo [3, 4-d] pyrimidines as cyclin-dependent kinase 2 inhibitors. Eur J Med Chem. 2003;38:525–32.

    CAS  PubMed  Google Scholar 

  77. Schenone S, Bruno O, Ranise A, Bondavalli F, Brullo C, Fossa P, et al. New pyrazolo [3, 4-d] pyrimidines endowed with A431 antiproliferative activity and inhibitory properties of Src phosphorylation. Bioorg Med Chem Lett. 2004;14:2511–7.

    CAS  PubMed  Google Scholar 

  78. Cherukupalli S, Chandrasekaran B, Kryštof V, Aleti RR, Sayyad N, Merugu SR, et al. Synthesis, anticancer evaluation, and molecular docking studies of some novel 4, 6-disubstituted pyrazolo [3, 4-d] pyrimidines as cyclin-dependent kinase 2 (CDK2) inhibitors. Bioorg Chem. 2018;79:46–59.

    CAS  PubMed  Google Scholar 

  79. Schenone S, Brullo C, Bruno O, Bondavalli F, Mosti L, Maga G, et al. Synthesis, biological evaluation and docking studies of 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidines. Eur J Med Chem. 2008;43:2665–76.

    CAS  PubMed  Google Scholar 

  80. Ducray R, Ballard P, Barlaam BC, Hickinson MD, Kettle JG, Ogilvie DJ, et al. Novel 3-alkoxy-1H-pyrazolo [3, 4-d] pyrimidines as EGFR and erbB2 receptor tyrosine kinase inhibitors. Bioorg Med Chem Lett. 2008;18:959–62.

    CAS  PubMed  Google Scholar 

  81. Kopecky DJ, Hao X, Chen Y, Fu J, Jiao X, Jaen JC, et al. Identification and optimization of N 3, N 6-diaryl-1H-pyrazolo [3, 4-d] pyrimidine-3, 6-diamines as a novel class of ACK1 inhibitors. Bioorg Med Chem Lett. 2008;18:6352–6.

    CAS  PubMed  Google Scholar 

  82. Cavasotto CN, Ortiz MA, Abagyan RA, Piedrafita FJ. In silico identification of novel EGFR inhibitors with antiproliferative activity against cancer cells. Bioorg Med Chem Lett. 2006;16:1969–74.

    CAS  PubMed  Google Scholar 

  83. Abdelgawad MA, Bakr RB, Alkhoja OA, Mohamed WR. Design, synthesis and antitumor activity of novel pyrazolo [3, 4-d] pyrimidine derivatives as EGFR-TK inhibitors. Bioorg Chem. 2016;66:88–96.

    CAS  PubMed  Google Scholar 

  84. Bakr RB, Mehany A. (3, 5-Dimethylpyrazol-1-yl)-[4-(1-phenyl-1H-pyrazolo [3, 4-d] pyrimidin-4-ylamino) phenyl] methanone. Molbank. 2016;2016:M915.

  85. Dahring TK, Lu GH, Hamby JM, Batley BL, Kraker AJ, Panek RL. Inhibition of growth factor-mediated tyrosine phosphorylation in vascular smooth muscle by PD 089828, a new synthetic protein tyrosine kinase inhibitor. J Pharmacol Exp Ther. 1997;281:1446–56.

    CAS  PubMed  Google Scholar 

  86. Boschelli DH, Wu Z, Klutchko SR, Showalter HH, Hamby JM, Lu GH, et al. Synthesis and tyrosine kinase inhibitory activity of a series of 2-amino-8 H-pyrido [2, 3-d] pyrimidines: identification of potent, selective platelet-derived growth factor receptor tyrosine kinase inhibitors. J Med Chem. 1998;41:4365–77.

    CAS  PubMed  Google Scholar 

  87. Kraker AJ, Hartl BG, Amar AM, Barvian MR, Showalter HH, Moore CW. Biochemical and cellular effects of c-Src kinase-selective pyrido [2, 3-d] pyrimidine tyrosine kinase inhibitors. Biochem Pharmacol. 2000;60:885–98.

    CAS  PubMed  Google Scholar 

  88. Connolly CJ, Hamby JM, Schroeder MC, Barvian M, Lu GH, Panek RL, et al. Discovery and structure-activity studies of a novel series of pyrido [2, 3-d] pyrimidine tyrosine kinase inhibitors. Bioorg Medicinal Chem Lett. 1997;7:2415–20.

    CAS  Google Scholar 

  89. Reddy MR, Akula B, Cosenza SC, Athuluridivakar S, Mallireddigari MR, Pallela VR. et al. Discovery of 8-cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7, 8-dihydro-pyrido [2, 3-d] pyrimidine-6-carbonitrile (7x) as a potent inhibitor of cyclin-dependent kinase 4 (CDK4) and AMPK-related kinase 5 (ARK5). J Med Chem. 2014;57:578–99.

  90. Edupuganti R, Wang Q, Tavares CD, Chitjian CA, Bachman JL, Ren P, et al. Synthesis and biological evaluation of pyrido [2, 3-d] pyrimidine-2, 4-dione derivatives as eEF-2K inhibitors. Bioorg Med Chem. 2014;22:4910–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Huang S, Armstrong EA, Benavente S, Chinnaiyan P, Harari PM. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res. 2004;64:5355–62.

    CAS  PubMed  Google Scholar 

  92. Gordon A, Finkler N, Edwards R, Garcia A, Crozier M, Irwin D, et al. Efficacy and safety of erlotinib HCl, an epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor, in patients with advanced ovarian carcinoma: results from a phase II multicenter study. Int J Gynecol Cancer. 2005;15:785–92.

    CAS  PubMed  Google Scholar 

  93. Kim ES, Hirsh V, Mok T, Socinski MA, Gervais R, Wu Y-L, et al. Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial. Lancet. 2008;372:1809–18.

    CAS  PubMed  Google Scholar 

  94. Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 2004;305:1163–7.

    CAS  PubMed  Google Scholar 

  95. Higa HM. Breast cancer: beyond the cutting edge. Expert Opin Pharmacother. 2009;10:2479–98.

  96. Ren H, Yang B, Rainov NG. Receptor tyrosine kinases as therapeutic targets in malignant glioma. Rev Recent Clin Trials. 2007;2:87–101.

    CAS  PubMed  Google Scholar 

  97. Wiedmann W, Mossner M. J. Molecular targeted therapy of hepatocellular carcinoma-results of the first clinical studies. Curr Cancer Drug Targets. 2011;11:714–33.

    CAS  PubMed  Google Scholar 

  98. Rewcastle GW, Denny WA, Bridges AJ, Zhou H, Cody DR, McMichael A, et al. Tyrosine kinase inhibitors. 5. Synthesis and structure-activity relationships for 4-[(phenylmethyl) amino]-and 4-(phenylamino) quinazolines as potent adenosine 5'-triphosphate binding site inhibitors of the tyrosine kinase domain of the epidermal growth factor receptor. J Med Chem. 1995;38:3482–87.

    CAS  PubMed  Google Scholar 

  99. Hennequin LF, Allen J, Breed J, Curwen J, Fennell M, Green TP. et al. N-(5-Chloro-1, 3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl) ethoxy]-5-(tetrahydro-2 H-pyran-4-yloxy) quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. J Med Chem. 2006;49:6465–88.

  100. Heron NM, Anderson M, Blowers DP, Breed J, Eden JM, Green S, et al. SAR and inhibitor complex structure determination of a novel class of potent and specific Aurora kinase inhibitors. Bioorg Med Chem Lett. 2006;16:1320–3.

    CAS  PubMed  Google Scholar 

  101. Spector N. Elucidating the role of truncated ErB2 receptor (p95) in breast cancer. United states: DTIC; 2011.

  102. Miyazaki Y, Matsunaga S, Tang J, Maeda Y, Nakano M, Philippe RJ, et al. Novel 4-amino-furo [2, 3-d] pyrimidines as Tie-2 and VEGFR2 dual inhibitors. Bioorg Med Chem Lett. 2005;15:2203–7.

    CAS  PubMed  Google Scholar 

  103. Miyazaki Y, Maeda Y, Sato H, Nakano M, Mellor GW. Rational design of 4-amino-5, 6-diaryl-furo [2, 3-d] pyrimidines as potent glycogen synthase kinase-3 inhibitors. Bioorg Med Chem Lett. 2008;18:1967–71.

    CAS  PubMed  Google Scholar 

  104. Gangjee A, Zeng Y, Ihnat M, Warnke LA, Green DW, Kisliuk RL, et al. Novel 5-substituted, 2, 4-diaminofuro [2, 3-d] pyrimidines as multireceptor tyrosine kinase and dihydrofolate reductase inhibitors with antiangiogenic and antitumor activity. Bioorg Med Chem. 2005;13:5475–91.

    CAS  PubMed  Google Scholar 

  105. Miyazaki Y, Tang J, Maeda Y, Nakano M, Wang L, Nolte RT, et al. Orally active 4-amino-5-diarylurea-furo [2, 3-d] pyrimidine derivatives as anti-angiogenic agent inhibiting VEGFR2 and Tie-2. Bioorg Med Chem Lett. 2007;17:1773–8.

    CAS  PubMed  Google Scholar 

  106. Maeda Y, Nakano M, Sato H, Miyazaki Y, Schweiker SL, Smith JL, et al. 4-Acylamino-6-arylfuro [2, 3-d] pyrimidines: potent and selective glycogen synthase kinase-3 inhibitors. Bioorg Med Chem Lett. 2004;14:3907–11.

    CAS  PubMed  Google Scholar 

  107. Coumar MS, Chu C-Y, Lin C-W, Shiao H-Y, Ho Y-L, Reddy R, et al. Fast-forwarding hit to lead: aurora and epidermal growth factor receptor kinase inhibitor lead identification. J Med Chem. 2010;53:4980–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled R. A. Abdellatif.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdellatif, K.R.A., Bakr, R.B. Pyrimidine and fused pyrimidine derivatives as promising protein kinase inhibitors for cancer treatment. Med Chem Res 30, 31–49 (2021). https://doi.org/10.1007/s00044-020-02656-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02656-8

Keywords

Navigation