Skip to main content

Advertisement

Log in

The combination of Bleomycin with TRAIL agonists or PKC inhibitors sensitizes solid tumor cells to BLM-mediated apoptosis: new strategies to overcome chemotherapy resistance of tumors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In this study we evaluated the effects of low dose of bleomycin in an associative treatment strategy in solid tumor cells. For this purpose, Human and murine colon cancer (SW480, HCT8, and CT26), and murine melanoma (B16-F10) cells were treated with different agents including protein kinase C, and c-jun NH2-terminal kinase inhibitors, and tumor necrosis factor-related apoptosis-inducing ligand. Apoptosis was identified by morphological criteria. Reactive oxygen species are evaluated by flow cytometry. Our data showed that bleomycin (100 µM) induced apoptosis in all the four cell lines tested with a level ranging from 30 to 60%. However, at lower dose (25 µM), bleomycin was less efficient to trigger apoptosis. In contrast, when bleomycin (25 µM) was combined with the protein kinase C inhibitor chelerythrine, or tumor necrosis factor-related apoptosis-inducing ligand, it elicited more apoptotic cell death ranging from 40 to 75%, depending on the cell type, whereas when it was associated with the c-jun NH2-terminal kinase inhibitor SP600125, bleomycin displayed different cell death responses. If bleomycin and SP600125 enhanced apoptosis in two colon cancer cells, HCT-8, and CT26, they reduced to 50% apoptosis in the melanoma B16-F10 cells, and were not synergistic in the human colon cancer cells, SW480. This synergism seemed to rely partially to reactive oxygen species, because N-acetyl cysteine inhibited apoptosis in some cells and with some agents. These findings indicate that tumor necrosis factor-related apoptosis-inducing ligand, and protein kinase C inhibition can represent candidates for improved cancer chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Basu SA, Teicherfi BA, LazoS JS (1991) Cellular sensitization to m-Diamminedichloroplatinum(II) by novel analogues of the protein kinase C activator lyngbyatoxin A1. Cancer Res 51:2511–2514

    CAS  PubMed  Google Scholar 

  • Bayer RA, Gaynor ER, Fisher RI (1992) Bleomycin in non-Hodgkin’s lymphoma. Semin Oncol 19:46–52

    CAS  PubMed  Google Scholar 

  • Benhar M, Dalyot I, Engelberg D, Levitzki A (2001) Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol Cell Biol 21:6913–6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boggs SS, Sartiano GP, De Mezza A (1974) Minimal bone marrow damage in mice given bleomycin. Cancer Res 34:1938–1942

    CAS  PubMed  Google Scholar 

  • Bonadonna G, Lena MD, Monfardini S, Bartoli C, Bajetta E (1972) Clinical trials with bleomycin in lymphomas and in solid tumors. Eur J Cancer 8:205–215

    Article  CAS  PubMed  Google Scholar 

  • Brahim S, Bettaieb A, Kenani A (2008) Deglycosylated bleomycin triggers apoptosis in laryngeal carcinoma cells in a caspase and reactive oxygen species independent manner. J Oral Pathol Med 37: 352–357

    Article  CAS  PubMed  Google Scholar 

  • Brahim S, Prévetat L, Yatouji S, Mérino D, Cortier M, Rébé C (2007) Deglycosylated bleomycin induces apoptosis in lymphoma cell via c-jun NH2-terminal kinase but not reactive oxygen species. Biochem Pharmacol 74:1445–1455

    Article  Google Scholar 

  • Burgy O, Wettstein G, Bellaye PS, Decologne N, Racoeur C, Goirand F, Beltramo G, Hernandez JF, Kenani A, Camus P, Bettaieb A, Garrido C, Bonniaud P (2016) Deglycosylated bleomycin has the antitumor activity of bleomycin without pulmonary toxicity. Sci Transl Med 17:326–3326

    Google Scholar 

  • Chaudhary NI, Schnapp A, Park JE (2006) Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model. Am J Respir Crit Care Med 173:769–776

    Article  CAS  PubMed  Google Scholar 

  • Debatin KM, Krammer PH (2004) Death receptors in chemotherapy and cancer. Oncogene 23:2950–2966

    Article  CAS  PubMed  Google Scholar 

  • Duggan DB, Petroni GR, Johnson JL, Glick JH, Fisher RI, Connors JM (2003) Randomized comparison of ABVD and MOPP/ABV hybrid for the treatment of advanced Hodgkin’s disease: report of an intergroup trial. J Clin Oncol 21:607–614

    Article  CAS  PubMed  Google Scholar 

  • Fidler I (1975) Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 35:218–224

    CAS  PubMed  Google Scholar 

  • Fujiwara Y, Hosokawa Y, Watanabe K, Tanimura S, Ozaki KI, Kohno M (2007) Blockade of the phosphatidylinositol-3-kinase–Akt signaling pathway enhances the induction of apoptosis by microtubule-destabilizing agents in tumor cells in which the pathway is constitutively activated. Mol Cancer Ther 6:1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Grande NR, Aguas AP, De Sousa Pereira A, Monteiro E, Castelo Branco NA (1999) Morphological changes in rat lung parenchyma exposed to low frequency noise. Aviat Space Environ Med 70:A70–A77

    CAS  PubMed  Google Scholar 

  • Gu Y, Wu YB, Wang LH, Yin JN (2015) Involvement of Kruppel-like factor 9 in bleomycin-induced pulmonary toxicity. Mol Med Rep 12:5262–5266

    CAS  PubMed  Google Scholar 

  • Hagimoto N, Kuwano K, Nomoto Y, Kunitake R, Hara N (1997) Apoptosis and expression of Fas/Fas ligand mRNA in bleomycin-induced pulmonary fibrosis in mice. Am J Respir Cell Mol Biol 16:91–101

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara SI, Ishii Y, Kitamura S (2000) Aerosolized administration of N-acetylcysteine attenuates lung fibrosis induced by bleomycin in mice. Am J Respir Crit Care Med 162:225–231

    Article  CAS  PubMed  Google Scholar 

  • Hamakawa H, Bao Y, Takarada M, Tanioka H (1998) Histological effects and predictive biomarkers of TPP induction chemotherapy for oral carcinoma. J Oral Pathol Med 27:87–94

    Article  CAS  PubMed  Google Scholar 

  • Iqbal ZM, Kohn KW, Ewig RA, Fornace AJ (1976) Single-strand scission and repair of DNA in mammalian cells by bleomycin. Cancer Res 36:3834–3838

    CAS  PubMed  Google Scholar 

  • Jin HL, Dong JC (2011) Pathogenesis of idiopathic pulmonary fibrosis: from initial apoptosis of epithelial cells to lung remodeling ? Chin Med J 124:4330–4338

    CAS  PubMed  Google Scholar 

  • Lee VY, Schroedl C, Brunelle JK, Buccellato LJ, Akinci OI (2005) Bleomycin induces alveolar epithelial cell death through JNK-dependent activation of the mitochondrial death pathway. Am J Physiol Lung Cell Mol Physiol 289:L521–L528

    Article  CAS  PubMed  Google Scholar 

  • Lehane DE, Hurd E, Lane M (1975) The effects of bleomycin on immunocompetence in man. Cancer Res 35:2724–2728

    CAS  PubMed  Google Scholar 

  • Levi JA, Raghavan D, Harvey V, Thompson D, Sandeman T (1993) The importance of bleomycin in combination chemotherapy for good-prognosis germ cell carcinoma. Australasian Germ Cell Trial Group. J Clin Oncol 11:1300–1305

    Article  CAS  PubMed  Google Scholar 

  • Lim MJ, Ahn J, Yi JY, Kim MH, Son AR, Lee SL, Lim DS, Kim SS, Kang MA, Han Y, Song JY (2014) Induction of galectin-1 by TGF-β1 accelerates fibrosis through enhancing nuclear retention of Smad2. Exp Cell Res 326:125–135

    Article  PubMed  Google Scholar 

  • Martin WG, Ristow KM, Habermann TM, Colgan JP, Witzig TE (2005) Bleomycin pulmonary toxicity has a negative impact on the outcome of patients with Hodgkin’s lymphoma. J Clin Oncol 23:7614–7620

    Article  CAS  PubMed  Google Scholar 

  • Millet A, Bettaieb A, Renaud F, Prevotat L, Hammann A (2002) Influence of the nitric oxide donor glyceryl trinitrate on apoptotic pathways in human colon cancer cells. Gastroenterology 123: 235–246

    Article  CAS  PubMed  Google Scholar 

  • Min KJ, Seo BR, Bae YC, Yoo YH, Kwon TK (2014) Antipsychotic agent thioridazine sensitizes renal carcinoma Caki cells to TRAIL-induced apoptosis through reactive oxygen species-mediated inhibition of Akt signaling and downregulation of Mcl-1 and c-FLIP(L). Cell Death Dis 20:e1063

    Article  Google Scholar 

  • Mitsiades N, Mitsiades CS, Poulaki V, Anderson KC, Treon SP (2002) Intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human multiple myeloma cells. Blood 99:2162–2171

    Article  CAS  PubMed  Google Scholar 

  • Moore CW, Malcolm AW, Tomkinson KN, Little JB (1985) Ultrarapid recovery from lethal effects of bleomycin and gamma-radiation in stationary-phase human diploid fibroblasts. Cancer Res 45:1978–1981

    CAS  PubMed  Google Scholar 

  • Papenfuss K, Cordier SM, Walczak H (2008) Death receptors as targets for anti-cancer therapy. J Cell Mol Med 2:2566–2585. doi:10.1111/j.1582-4934

    Article  Google Scholar 

  • Park SA, Kim MJ, Park SY, Kim JS, Lee SJ, Woo HA, Kim DK, Nam JS, Sheen YY (2015) inhibits hepatic, renal, and pulmonary fibrosis by blocking TGF-β/Smad and ROS signaling. Cell Mol Life Sci 72:2023–2039

    Article  CAS  PubMed  Google Scholar 

  • Provinciali M, Pierpaoli E, Bartozzi B, Bernardini G (2015) Zinc induces apoptosis of human melanoma cells, increasing reactive oxygen species, p53 and FAS ligand. Anticancer Res 35:5309–5316

    CAS  PubMed  Google Scholar 

  • Quast SA, Berger A, Eberle J (2013) ROS-dependent phosphorylation of Bax by wortmannin sensitizes melanoma cells for TRAIL-induced apoptosis. Cell Death Dis 10:e839

    Article  Google Scholar 

  • Rebeyrol C, Saint-Criq V, Guillot L, Riffault L, Corvol H, Chadelat K, Ray DW, Clement A, Tabary O, Le Rouzic P (2012) Glucocorticoids reduce inflammation in cystic fibrosis bronchial epithelial cells. Cell Signal 24:1093–1099

    Article  CAS  PubMed  Google Scholar 

  • Roudier E, Mistafa O, Stenius U (2006) Statins induce mammalian target of rapamycin (mTOR)-mediated inhibition of Akt signaling and sensitize p53-deficient cells to cytostatic drugs. Mol Cancer Ther 5:2706–2715

    Article  CAS  PubMed  Google Scholar 

  • Sausville EA, Peisach J, Horwitz SB (1978) Effect of chelating agents and metal ions on the degradation of DNA by bleomycin. Biochemistry 17:2740–2746

    Article  CAS  PubMed  Google Scholar 

  • Schneider P (2000) Production of recombinant TRAIL and TRAIL receptor: Fc chimeric proteins. Methods Enzymol 322:325–345

    Article  CAS  PubMed  Google Scholar 

  • Selimovic D, Hassan M, Haikel Y, Hengge UR (2008) Taxol-induced mitochondrial stress in melanoma cells is mediated by activation of c-Jun N-terminal kinase (JNK) and p38 pathways via uncoupling protein 2. Cell Signal 20:311–322

    Article  CAS  PubMed  Google Scholar 

  • Sleijfer S (2001) Bleomycin-induced pneumonitis. Chest 120:617–624

    Article  CAS  PubMed  Google Scholar 

  • Tobwala S, Fan W, Stoeger T, Ercal N (2013) N-acetylcysteine amide, a thiol antioxidant, prevents bleomycin-induced toxicity in human alveolar basal epithelial cells (A549). Free Radic Res 47:740–749

    Article  CAS  PubMed  Google Scholar 

  • Tounekti O, Kenani A, Foray N, Orlowski S, Mir LM (2001) The ratio of single- to double-strand DNA breaks and their absolute values determine cell death pathway. Br J Cancer 84:1272–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallach-Dayan SB, Izbicki G, Cohen PY, Gerstl-Golan R, Fine A (2006) Bleomycin initiates apoptosis of lung epithelial cells by ROS but not by Fas/FasL pathway. Am J Physiol Lung Cell Mol Physiol 290:L790–L796

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Ibarra-Sunga O, Verlinski L, Pick R, Uhal BD (2000) Abrogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by a caspase inhibitor. Am J Physiol Lung Cell Mol Physiol 279:L143–L151

    CAS  PubMed  Google Scholar 

  • Zhang L, Yang X, Li X, Li C, Zhao L, Zhou Y, Hou H (2015) Butein sensitizes HeLa cells to cisplatin through the AKT and ERK/p38 MAPK pathways by targeting FoxO3a. Int J Mol Med 36:957–966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SY, Li XB, Hou SG, Sun Y, Shi YR, Lin SS (2016) Cedrol induces autophagy and apoptotic cell death in A549 non-small cell lung carcinoma cells through the P13K/Akt signaling pathway, the loss of mitochondrial transmembrane potential and the generation of ROS. Int J Mol Med 38:291–299

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souhir Brahim.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahim, S., Aroui, S., Ali, R. et al. The combination of Bleomycin with TRAIL agonists or PKC inhibitors sensitizes solid tumor cells to BLM-mediated apoptosis: new strategies to overcome chemotherapy resistance of tumors. Med Chem Res 26, 2105–2111 (2017). https://doi.org/10.1007/s00044-017-1915-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-1915-9

Keywords

Navigation