Skip to main content
Log in

Synthesis and in vitro evaluation of novel triazole/azide chalcones

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of 30 novel triazole/azide chalcone derivatives were synthesized by Claisen-Schmidt and Cu(I)-catalyzed cycloaddition reactions. The antiproliferative activity of each compound was evaluated against HeLa, RKO-AS45-1 and Wi-26VA4 cell lines. Terminal deoxynucleotidyl transferase dUTP nick end labeling assays indicated that compounds 4j and 5j significantly reduced the HeLa and RKO-AS45-1cell populations compared to the controls. The relative expression of the TP53 gene revealed changes in both cell lines after exposure to compounds 5j and 4j. The increased expression of the TP53 gene suggests a cellular attempt to repair DNA damage and indicates these triazole/azide chalcone derivatives as promising anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas A, Naseer MM, Hasan A, Hadda TBen (2014) Synthesis and cytotoxicity studies of 4-alkoxychalcones as new antitumor agents. J Mater Environ Sci 5:281–292

    CAS  Google Scholar 

  • Abonia R, Insuasty D, Castillo J et al. (2012) Synthesis of novel quinoline-2-one based chalcones of potential anti-tumor activity. Eur J Med Chem 57:29–40. doi:10.1016/j.ejmech.2012.08.039

    Article  CAS  PubMed  Google Scholar 

  • Abu N, Ho WY, Yeap SK et al. (2013) The flavokawains: uprising medicinal chalcones. Cancer Cell Int 13:102. doi:10.1186/1475-2867-13-102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Achanta G, Modzelewska A, Feng L et al. (2006) A boronic-chalcone derivative exhibits potent anticancer activity through inhibition of the proteasome. Mol Pharmacol 70:426–433. doi:10.1124/mol.105.021311.be

    CAS  PubMed  Google Scholar 

  • Alvarez SG, Alvarez MT (1997) A practical procedure for the synthesis of alkyl azides at ambient temperature in dimethyl sulfoxide in high purity and yield. Synthesis 1997:413–414. doi:10.1055/s-1997-1206

    Article  Google Scholar 

  • Amidon GL, Lennernäs H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420

    Article  CAS  PubMed  Google Scholar 

  • Bandgar BP, Gawande SS, Bodade RG et al. (2010) Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorg Med Chem 18:1364–1370. doi:10.1016/j.bmc.2009.11.066

    Article  CAS  PubMed  Google Scholar 

  • Bracci L, Schiavoni G, Sistigu A, Belardelli F (2014) Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 21:15–25. doi:10.1038/cdd.2013.67

    Article  CAS  PubMed  Google Scholar 

  • Carmichael J, Degraff WG, Gazdar AF, et al. (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of radiosensitivity. Cancer Res 1. 943–946

  • Champelovier P, Chauchet X, Hazane-Puch F et al. (2013) Cellular and molecular mechanisms activating the cell death processes by chalcones: critical structural effects. Toxicol In Vitro 27:2305–2315. doi:10.1016/j.tiv.2013.09.021

    Article  CAS  PubMed  Google Scholar 

  • Chauhan SS, Singh AK, Meena S et al. (2014) Synthesis of novel β-carboline based chalcones with high cytotoxic activity against breast cancer cells. Bioorg Med Chem Lett 24:2820–4. doi:10.1016/j.bmcl.2014.04.109

    Article  CAS  PubMed  Google Scholar 

  • Chinthala Y, Thakur S, Tirunagari S et al. (2015) Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity. Eur J Med Chem 93:564–573. doi: 10.1016/j.ejmech.2015.02.027

    Article  CAS  PubMed  Google Scholar 

  • Ethiraj KR, Aranjani JM, Nawaz Khan F (2013) Potential cytotoxic and apoptosis inducing agents: synthesis and evaluation of methoxy-substituted chalcones against human lung and cervical cancers. Med Chem Res 22:5408–5417. doi:10.1007/s00044-013-0520-9

    Article  CAS  Google Scholar 

  • Firoozpour L, Edraki N, Nakhjiri M et al. (2012) Cytotoxic activity evaluation and QSAR study of chromene-based chalcones. Arch Pharm Res 35:2117–2125. doi:10.1007/s12272-012-1208-2

    Article  CAS  PubMed  Google Scholar 

  • Guantai EM, Ncokazi K, Egan TJ et al. (2010) Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg Med Chem 18:8243–8256. doi:10.1016/j.bmc.2010.10.009

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Zhuang C, Zhu L et al. (2012) Structure-activity relationship and antitumor activity of thio-benzodiazepines as p53-MDM2 protein-protein interaction inhibitors. Eur J Med Chem 56:10–16. doi:10.1016/j.ejmech.2012.08.003

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge CE, Hoffman MM, Bhattacharjee AK et al. (2011) In vitro efficacy of 7-benzylamino-1-isoquinolinamines against Plasmodium falciparum related to the efficacy of chalcones. Bioorg Med Chem Lett 21:786–789. doi:10.1016/j.bmcl.2010.11.099

    Article  CAS  PubMed  Google Scholar 

  • Hans RH, Guantai EM, Lategan C et al. (2010) Synthesis, antimalarial and antitubercular activity of acetylenic chalcones. Bioorg Med Chem Lett 20:942–944. doi:10.1016/j.bmcl.2009.12.062

    Article  CAS  PubMed  Google Scholar 

  • Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis—the p53 network. J Cell Sci 116:4077–4085. doi:10.1242/jcs.00739

    Article  CAS  PubMed  Google Scholar 

  • Iqbal H, Prabhakar V, Sangith A, et al. (2014) Synthesis, anti-inflammatory and antioxidant activity of ring-A-monosubstituted chalcone derivatives. Med Chem Res. 23(10):4383–4394. doi:10.1007/s00044-014-1007-z

  • Jin C, Liang Y-J, He H, Fu L (2013) Synthesis and antitumor activity of novel chalcone derivatives. Biomed Pharmacother 67:215–217. doi:10.1016/j.biopha.2010.12.010

    Article  CAS  PubMed  Google Scholar 

  • Johnson CL, Lu D, Huang J, Basu A (2002) Regulation of p53 stabilization by DNA damage and protein kinase C 1 supported by grants CA71727 and CA85682 from the National Cancer Institute. Mol Cancer Ther 8–15

  • Kamal A, Prabhakar S, Janaki Ramaiah M et al. (2011) Synthesis and anticancer activity of chalcone-pyrrolobenzodiazepine conjugates linked via 1,2,3-triazole ring side-armed with alkane spacers. Eur J Med Chem 46:3820–3831. doi:10.1016/j.ejmech.2011.05.050

    Article  CAS  PubMed  Google Scholar 

  • Khan I A, Jahan P, Hasan Q, Rao P (2013) Angiotensin-converting enzyme gene insertion/deletion polymorphism studies in Asian Indian pregnant women biochemically identifies gestational diabetes mellitus. J Renin Angiotensin Aldosterone Syst doi:10.1177/1470320313502106

  • Khoo KH, Hoe KK, Verma CS, Lane DP (2014) Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov 13:217–236. doi:10.1038/nrd4236

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Park SW, Kim YR et al. (2010) Mutational analysis of caspase genes in prostate carcinomas. APMIS 118:308–312. doi:10.1111/j.1600-0463.2010.02592.x

    Article  CAS  PubMed  Google Scholar 

  • Kim NY, Pae HO, Oh GS et al. (2001) Butein, a plant polyphenol, induces apoptosis concomitant with increased caspase-3 activity, decreased Bcl-2 expression and increased Bax expression in HL-60 cells. Pharmacol Toxicol 88:261–266

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Raj KK, Malhotra SV, Rawat DS (2014) Synthesis and anticancer activity evaluation of resveratrol–chalcone conjugates. Medchemcomm 5:528. doi:10.1039/c3md00329a

    Article  CAS  Google Scholar 

  • Lee SE, Lee SE, Shin H et al. (2003) Antioxidant activity of extracts from Alpinia katsumadai seed. Phyther Res 1047:1041–1047

    Article  Google Scholar 

  • Lim SS, Kim H, Lee D (2007) Antimalarial activity of flavonoids and chalcones. Bull Korean Chem Soc 28:2495–2497

  • Liu J, Zhang C, Feng Z (2014) Tumor suppressor p53 and its gain-of-function mutants in cancer. Acta Biochim Biophys Sin. 46:170–179. doi:10.1093/abbs/gmt144.Advance

  • Mahapatra DK, Bharti SK, Asati V (2015) Anti-cancer chalcones: structural and molecular target perspectives. Eur J Med Chem 98:69–114. doi:10.1016/j.ejmech.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  • Melo JOF, Universitário C, Minas DPDe et al. (2006) HETEROCICLOS 1,2,3-Triazólicos: Histórico, métodos de preparação, aplicações e atividades. FARMACOLÓGICAS 29:569–579

    CAS  Google Scholar 

  • Mesenzani O, Massarotti A, Giustiniano M et al. (2011) Replacement of the double bond of antitubulin chalcones with triazoles and tetrazoles: synthesis and biological evaluation. Bioorg Med Chem Lett 21:764–768. doi:10.1016/j.bmcl.2010.11.113

    Article  CAS  PubMed  Google Scholar 

  • Mielcke TR, Mascarello A, Filippi-chiela E et al. (2012) Activity of novel quinoxaline-derived chalcones on in vitro glioma cell proliferation. Eur J Med Chem 48:255–264. doi:10.1016/j.ejmech.2011.12.023

    Article  CAS  PubMed  Google Scholar 

  • Mojzis J, Varinska L, Mojzisova G et al. (2008) Antiangiogenic effects of flavonoids and chalcones. Pharmacol Res 57:259–265 doi:10.1016/j.phrs.2008.02.005

    Article  CAS  PubMed  Google Scholar 

  • Moon D-O, Kim M-O, Choi YH, Kim G-Y (2010) Butein sensitizes human hepatoma cells to TRAIL-induced apoptosis via extracellular signal-regulated kinase/Sp1-dependent DR5 upregulation and NF-kappaB inactivation. Mol Cancer Ther 9:1583–1595 doi:10.1158/1535-7163.MCT-09-0942

    Article  CAS  PubMed  Google Scholar 

  • Mourad MAE, Abdel-Aziz M, Abuo-Rahma GE-DAA, Farag HH (2012) Design, synthesis and anticancer activity of nitric oxide donating/chalcone hybrids. Eur J Med Chem 54:907–913 doi:10.1016/j.ejmech.2012.05.030

    Article  CAS  PubMed  Google Scholar 

  • Nagaraju M, Gnana Deepthi E, Ashwini C et al. (2012) Synthesis and selective cytotoxic activity of novel hybrid chalcones against prostate cancer cells. Bioorg Med Chem Lett 22:4314–4317 doi:10.1016/j.bmcl.2012.05.016

    Article  CAS  PubMed  Google Scholar 

  • Noushini S, Alipour E, Emami S et al. (2013) Synthesis and cytotoxic properties of novel (E)-3-benzylidene-7-methoxychroman-4-one derivatives. Daru 21:31. doi:10.1186/2008-2231-21-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlikova B, Tasdemir D, Golais F et al. (2011) Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr 6:125–147. doi:10.1007/s12263-011-0210-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Kramer BS, Steinberg SM, et al. (1987) Chemosensitivity testing of human colorectal carcinoma cell lines using a tetrazolium-based colorimetric assay. Cancer Res 5875–5879

  • Pilatova M, Varinska L, Perjesi P et al. (2010) In vitro antiproliferative and antiangiogenic effects of synthetic chalcone analogues. Toxicol In Vitro 24:1347–1355. doi:10.1016/j.tiv.2010.04.013

    Article  CAS  PubMed  Google Scholar 

  • Rao YK, Kao T-Y, Ko J-L, Tzeng Y-M (2010) Chalcone HTMC causes in vitro selective cytotoxicity, cell-cycle G1 phase arrest through p53-dependent pathway in human lung adenocarcinoma A549 cells, and in vivo tumor growth suppression. Bioorg Med Chem Lett 20:6508–6512. doi:10.1016/j.bmcl.2010.09.056

    Article  CAS  PubMed  Google Scholar 

  • Romagnoli R, Baraldi PG, Carrion MD et al. (2009) Hybrid alpha-bromoacryloylamido chalcones. Design, synthesis and biological evaluation. Bioorg Med Chem Lett 19:2022–2028. doi:10.1016/j.bmcl.2009.02.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma N, Mohanakrishnan D, Sharma UK et al. (2014) Design, economical synthesis and antiplasmodial evaluation of vanillin derived allylated chalcones and their marked synergism with artemisinin against chloroquine resistant strains of Plasmodium falciparum. Eur J Med Chem 79:350–368. doi:10.1016/j.ejmech.2014.03.079

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Chaudhary A, Arora S et al. (2013) β-Ionone derived chalcones as potent antiproliferative agents. Eur J Med Chem 69:310–315. doi:10.1016/j.ejmech.2013.08.017

    Article  CAS  PubMed  Google Scholar 

  • Shi H-B, Zhang S-J, Ge Q-F et al. (2010) Synthesis and anticancer evaluation of thiazolyl-chalcones. Bioorg Med Chem Lett 20:6555–6559. doi:10.1016/j.bmcl.2010.09.041

    Article  CAS  PubMed  Google Scholar 

  • Shin SY, Yoon H, Ahn S et al. (2013) Chromenylchalcones showing cytotoxicity on human colon cancer cell lines and in silico docking with aurora kinases. Bioorg Med Chem 21:4250–4258. doi:10.1016/j.bmc.2013.04.086

    Article  CAS  PubMed  Google Scholar 

  • da Silva GD, da Silva MG, Souza EMPVE et al. (2012) Design and synthesis of new chacones substituted with azide/triazole groups and analysis of their cytotoxicity towards HeLa cells. Molecules 17:10331–10343. doi:10.3390/molecules170910331

    Article  PubMed  Google Scholar 

  • Singh AK, Singh RK, Arshad M, Keshari D (2013) Synthesis, cytotoxicity and anti-mycobacterial activity evaluation of some newly substituted heterocyclic chalcones. Der Pharma Chemica 5:185–191

  • Singh P, Anand A, Kumar V (2014) Recent developments in biological activities of chalcones: a mini review. Eur J Med Chem 85C:758–777. doi:10.1016/j.ejmech.2014.08.033

    Article  Google Scholar 

  • Singh P, Raj R, Kumar V et al. (2012) 1,2,3-Triazole tethered β-lactam-chalcone bifunctional hybrids: synthesis and anticancer evaluation. Eur J Med Chem 47:594–600. doi:10.1016/j.ejmech.2011.10.033

    Article  CAS  PubMed  Google Scholar 

  • Sinkule JA (1984) Etoposide: a semisynthetic epipodophyllotoxin. Chemistry, pharmacology, pharmacokinetics, adverse effects and use as an antineoplastic agent. Pharmacotherapy 4:61–73

    Article  CAS  PubMed  Google Scholar 

  • Still WC, Kahn M, Mitra A (1978) Rapid chromatographic technique for preparative separations with moderate resolution. J Org Chem 2923–2925

  • Syam S, Abdelwahab SI, Al-Mamary MA, Mohan S (2012) Synthesis of chalcones with anticancer activities. Molecules 17:6179–6195. doi:10.3390/molecules17066179

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Matsushima H, Mizumoto N, Takashima A (2009) Classification of chemotherapeutic agents based on their differential in vitro effects on dendritic cells. Cancer Res 69:6978–6986. doi:10.1158/0008-5472.CAN-09-1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomar V, Bhattacharjee G, Kamaluddin et al. (2010) Synthesis of new chalcone derivatives containing acridinyl moiety with potential antimalarial activity. Eur J Med Chem 45:745–751. doi:10.1016/j.ejmech.2009.11.022

    Article  CAS  PubMed  Google Scholar 

  • de Vasconcelos A, Campos VF, Nedel F et al. (2013) Cytotoxic and apoptotic effects of chalcone derivatives of 2-acetyl thiophene on human colon adenocarcinoma cells. Cell Biochem Funct 31:289–297. doi:10.1002/cbf.2897

    Article  PubMed  Google Scholar 

  • Yin B-T, Yan C-Y, Peng X-M et al. (2014) Synthesis and biological evaluation of α-triazolyl chalcones as a new type of potential antimicrobial agents and their interaction with calf thymus DNA and human serum albumin. Eur J Med Chem 71:148–159. doi:10.1016/j.ejmech.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  • Zhang E, Wang R, Guo S, Liu B (2013a) An update on antitumor activity of naturally occurring chalcones. Evid Based Complement Alternat Med. 2013: 815621. doi:10.1155/2013/815621

  • Zhang J, Fu X-L, Yang N, Wang Q-A (2013b) Synthesis and cytotoxicity of chalcones and 5-deoxyflavonoids. ScientificWorld J 2013:649485. doi:10.1155/2013/649485

    Google Scholar 

  • Zhao B, Jiang L, Liu Z, et al. (2014) Microwave-assisted Michael addition of 2-amino pyridine to chalcones under catalyst-free conditions. Res Chem Intermed. doi:10.1007/s11164-014-1703-9

  • Zhuang C, Miao Z, Zhu L et al. (2012) Discovery, synthesis, and biological evaluation of orally active pyrrolidone derivatives as novel inhibitors of p53-MDM2 protein-protein interaction. J Med Chem 55:9630–9642. doi:10.1021/jm300969t

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adriano P. Sabino or Fernando P. Varotti.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evangelista, F.C.G., Bandeira, M.O., Silva, G.D. et al. Synthesis and in vitro evaluation of novel triazole/azide chalcones. Med Chem Res 26, 27–43 (2017). https://doi.org/10.1007/s00044-016-1705-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1705-9

Keywords

Navigation