Skip to main content
Log in

Phytochemical characterization and effect of Calendula officinalis, Hypericum perforatum, and Salvia officinalis infusions on obesity-associated cardiovascular risk

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Medicinal herb infusions can be used for the treatment of obesity-related metabolic alterations. The aim of this study was to characterize the phytochemical profile and to evaluate the effect of Hypericum perforatum, Salvia officinalis, and Calendula officinalis on the cardiovascular risk developed in diet-induced obese rats. All infusions decreased body weight and abdominal fat mass and reduced serum triglycerides (TG), total cholesterol, low-density lipoproteins, and C-reactive protein levels. The anti-obesogenic and hypolipidemic effect of C. officinalis and H. perforatum were associated with the inhibition of triglycerides digestion and absorption. Conversely, the hypolipidemic effect of S. officinalis was not associated with this mechanism. Moreover, seven phenolic acids and nine flavonoids were quantified by HPLC–UV/VIS, hesperidin and epigallocatechin gallate were the majoritarian compounds of H. perforatum and C. officinalis, whereas rosmarinic and ellagic acids were the main compounds in S. officinalis. Additionally, we used HPLC–DAD–MSD to identify 45 phytochemicals, such as anthraquinone and phloroglucinol derivatives, phytosterols, saponins, and alkaloids. Total flavonoids, phytosterols, and alkaloids content were highly correlated with TG levels, AUC values from the oil tolerance test, and pancreatic lipase inhibition. These results suggest that these phytochemical-rich infusions may be used as an alternative for obesity-related cardiovascular risk treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allison DB, Paultre F, Maggio C, Mezzitis N, Pi-Sunyer FX (1995) The use of areas under curves in diabetes research. Diab Care 18:245–250

    Article  CAS  Google Scholar 

  • Babu PVA, Sabitha KE, Shyamaladevi CS (2006) Green tea impedes dyslipidemia, lipid peroxidation, protein glycation and ameliorates Ca2+-ATPase and Na+/K+-ATPase activity in the heart of streptozotocin-diabetic rats. Chemico-Biol Interact 162:157–164

    Article  CAS  Google Scholar 

  • Blüher M (2009) Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes 117:241–250

    Article  PubMed  CAS  Google Scholar 

  • Carrasco F, Moreno M, Irribarra V, Rodríguez L, Martin MA, Alarcón A, Mizón C, Echenique C, Saavedra V, Pizarro T, Atalah E (2008) Evaluation of a pilot intervention program for overweight and obese adults at risk of type 2 diabetes. Rev Med Chile 136:13–21

    PubMed  Google Scholar 

  • Chen N, Bezzina R, Hinch E, Lewandowski PA, Cameron-Smith D, Mathai ML, Sinclair AJ, Begg DP, Wark JD, Weisinger HS, Weisinger RS (2009) Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet. Nutr Res 29:784–793

    Article  PubMed  CAS  Google Scholar 

  • Devaraj S, Singh U, Jialal I (2009) The evolving role of C-reactive protein in atherothrombosis. Clin Chem 55:229–238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Do Prado ACP, Manion BA, Seetharaman K, Deschamps FC, Arellano DB, Block JM (2013) Relationship between antioxidant properties and chemical composition of the oil and the shell of pecan nuts [Caryaillinoinensis (Wangenh) C. Koch]. Ind Crops Prod 45:64–73

    Article  CAS  Google Scholar 

  • Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J (2000) Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord 24:252–258

    Article  PubMed  CAS  Google Scholar 

  • El-Soud NHA, Khalil MY, Hussein JS, Oraby FSH, Farrag ARH (2007) Antidiabetic effects of fenugreek alkaloid extract in streptozotocin induced hyperglycemic rats. J Appl Sci Res 3:1073–1083

    CAS  Google Scholar 

  • Figueroa-Pérez MG, Rocha-Guzmán NE, Mercado-Silva E, Loarca-Piña G, Reynoso-Camacho R (2014) Effect of chemical elicitors on peppermint (Mentha piperita) plants and their impact on the metabolite profile and antioxidant capacity of resulting infusions. Food Chem 156:273–278

    Article  PubMed  CAS  Google Scholar 

  • Gettler AO, Sunshine I (1951) Colorimetric determination of alkaloids in tissues by means of methyl orange. Anal Chem 23:779–781

    Article  CAS  Google Scholar 

  • Gray DE, Rottinghaus GE, Garrett HE, Pallardy SG (2000) Simultaneous determination of the predominant hyperforins and hypericins in St. John’s Wort (Hypericum perforatum L.) by liquid chromatography. J AOAC Int 83:944–949

    PubMed  CAS  Google Scholar 

  • Hiai S, Oura H, Nakajima T (1976) Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta Med 29:116–122

    Article  PubMed  CAS  Google Scholar 

  • Hsu CL, Wu CH, Huang SL, Yen GC (2009) Phenolic compounds rutin and o-coumaric acid ameliorate obesity induced by high-fat diet in rats. J Agric Food Chemi 57:425–431

    Article  CAS  Google Scholar 

  • Hu XQ, Wang YM, Wang JF, Xue Y, Li ZJ, Nagao K, Yanagita T, Xue CH (2010) Dietary saponins of sea cucumber alleviate orotic acid-induced fatty liver in rats via PPARa and SREBP-1c signaling. Lipids Health Dis 9:25–34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Husain GM, Chatterjee SS, Singh PN, Kumar V (2011) Hypolipidemic and antiobesity-like activity of standardized extract of Hypericum perforatum L. in rats. ISRN Pharmacol 2011:1–7

    Article  Google Scholar 

  • Kianbakht S, Abasi B, Perham M, Hashem-Dabaghian F (2011) Antihyperlipidemic effects of Salvia officinalis L. leaf extract in patients with hyperlipidemia: a randomized double-blind placebo-controlled clinical trial. Phytother Res 25:1849–1853

    Article  PubMed  CAS  Google Scholar 

  • Klop B, Elte JWF, Cabezas MC (2013) Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 5:1218–1240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurkin VA, Sharova OV (2007) Flavonoids from Calendula officinalis flowers. Chem Nat Compd 43:216–217

    Article  CAS  Google Scholar 

  • Liu Y, Hu M (2002) Absorption and metabolism of flavonoids in the caco-2 cell culture model and a perused rat intestinal model. Drug Metabol Dispos 30:370–377

    Article  CAS  Google Scholar 

  • Lomas-Soria C, Pérez-Ramírez IF, Caballero-Pérez J, Guevara-González RG, Guevara-Olvera L, Loarca-Piña G, Guzmán-Maldonado HS, Reynoso-Camacho R (2015) Cooked common beans (Phaseolus vulgaris L.) modulates renal genes in streptozotocin-induced diabetic rats. J Nutr Biochem 26:761–768

    Article  PubMed  CAS  Google Scholar 

  • Mathieu P, Lemieux I, Després JP (2010) Obesity, inflammation, and cardiovascular risk. Clin Pharmacol Therapeut 87:407–416

    Article  CAS  Google Scholar 

  • McAnuff MA, Harding WW, Omoruyi FO, Jacobs H, Morrison EY, Asemota HN (2005) Hypoglycemic effects of steroidal sapogenins isolated from Jamaican bitter yam, Dioscorea polygonoides. Food Chem Toxicol 43:1667–1672

    Article  PubMed  CAS  Google Scholar 

  • McDougall GJ, Kulkarni NN, Stewart D (2009) Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem 115:193–199

    Article  CAS  Google Scholar 

  • Muley BP, Khadabadi SS, Banarase NB (2009) Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): a review. Trop J Pharm Res 8:455–465

    Article  CAS  Google Scholar 

  • Park HJ, Kim DH, Choi JW, Park JH, Han YN (1998) A potent anti-diabetic agent from Kalopanaxpictus. Arch Pharm Res 21:24–29

    Article  PubMed  CAS  Google Scholar 

  • Reiter C, Kim J, Quon M (2010) Green tea polyphenol epigallocatechin gallate reduces endothelin-1 expression and secretion in vascular endothelial cells: roles for AMP-activated protein kinase, Akt, and FOXO1. Endocrinol 151:103–114

    Article  CAS  Google Scholar 

  • Sá C, Ramos A, Azevedo M, Lima C, Fernándes-Ferreira M, Pereira-Wilson C (2009) Sage tea drinking improves lipid profile and antioxidant defences in humans. Int J Mol Sci 10:3937–3950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Meth Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Sturm S, Strasser EM, Stuppner H (2006) Quantification of Fumaria officinalis isoquinoline alkaloids by nonaqueous capillary electrophoresis–electrospray ion trap mass spectrometry. J Chromatogr A 1112:331–338

    Article  PubMed  CAS  Google Scholar 

  • Tatsis EC, Boeren S, Exarchou V, Troganis AN, Vervoort J, Gerothanassis IP (2007) Identification of the major constituents of Hypericum perforatum by LC/SPE/NMR and/or LC/MS. Phytochemistry 68:383–393

    Article  PubMed  CAS  Google Scholar 

  • Tian J, R-y Tao, Z-l Zhang, Liu Q, He Y-b Su, Y-l Ji T-j, Ye F (2015) Effect of Hypericum perforatum L. extract on insulin resistance and lipid metabolic disorder in high-fat-diet induced obese mice. Phytother Res 29:86–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Tucci S, Boyland EJ, Halford JC (2010) The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents. Diabetes Metab Syndr Obes 3:125–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Gaal LF, Mertens IL, Christophe E (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444:875–880

    Article  PubMed  CAS  Google Scholar 

  • Wolfram S, Wang Y, Thielecke F (2006) Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res 50:176–187

    Article  PubMed  CAS  Google Scholar 

  • You Q, Chen F, Wang X, Jiang Y, Lin S (2012) Anti-diabetic activities of phenolic compounds in muscadine against alpha-glucosidase and pancreatic lipase. LWT-Food Sci Technol 46:164–168

    Article  CAS  Google Scholar 

  • Zimmermann B, Walch S, Tinzoh L, Stühlinger W, Lachenmeier D (2011) Rapid UHPLC determination of polyphenols in aqueous infusions of Salvia officinalis L. (sage tea). J Chromatogr B Analyt Technol Biomed Life Sci 879:2459–2464

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from FOMIX CONACyT-Queretaro (QRO-2008-CO2-10090) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalia Reynoso-Camacho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Saavedra, D., Pérez-Ramírez, I.F., Ramos-Gómez, M. et al. Phytochemical characterization and effect of Calendula officinalis, Hypericum perforatum, and Salvia officinalis infusions on obesity-associated cardiovascular risk. Med Chem Res 25, 163–172 (2016). https://doi.org/10.1007/s00044-015-1454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-015-1454-1

Keywords

Navigation