Skip to main content

Advertisement

Log in

Antimalarial potential of extracts and isolated compounds from four species of genus Ammannia

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The plants of genus Ammannia (Lythraceae) are being frequently used in traditional Chinese and Indian medicine to cure various diseases. The present study was designed to investigate the antimalarial potential of extracts and compounds from four species of genus Ammannia viz., A. multiflora, A. baccifera, A. verticillata, and A. coccinea. Properly dried and milled samples comprising of various plant parts were separately extracted with methanol and the extracts were fractionated with n-hexane, chloroform, and n-butanol. The chloroform (BR2), n-butanol (BR3) fractions of A. baccifera roots and methanol extract of A. coccinea (AC) showed potent in vitro antiplasmodial activity against Plasmodium falciparum NF-54 (IC50 3.5, 2.7, and 4.5 μg/ml, respectively) with nontoxicity to Vero cells as evident from their high selectivity index (>57.41, >74.07, and >44.44, respectively). Apart from these, 11 extracts/fractions possessed significant (IC50 14.5–40.2 μg/ml) antiplasmodial potential; most of which were nontoxic to Vero cells. The methanol extracts of A. verticillata aerial parts (VL) and AC, n-butanol fraction of A. multiflora (AM3) were evaluated for in vivo activity against rodent malaria parasite P. berghei, which showed percentage chemosuppression of parasitaemia in mice by 98.99, 63.33, and 60.00 %, respectively. The detailed phytochemical investigation of A. multiflora and A. baccifera afforded a total of 11 compounds; among them 4-hydroxy-α-tetralone, tetralone-4-O-β-d-glucopyranoside, and ammaniol exhibited moderate antiplasmodial activities (IC50 31.5, 36.1, and 22.6 μg/ml, respectively). Due to high degree of selective antiplasmodial activity, these plants may find their use in antimalarial phytopharmaceuticals as well as in the development and discovery of safer and novel antimalarial leads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adebayo JO, Krettli AU (2011) Potential antimalarials from Nigerian plants: a review. J Ethnopharmacol 133:289–302

    Article  CAS  PubMed  Google Scholar 

  • Agarwal J, Singh SP, Chanda D, Bawankule DU, Bhakuni RS, Pal A (2011) Antiplasmodial activity of artecyclopentyl mether a new artemisinin derivative and its effect on pathogenesis in Plasmodium yoelii nigeriensis infected mice. Parasitol Res 109:1003–1008

    Article  PubMed  Google Scholar 

  • Arjen M, Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NPJ, Lindegardh N, Socheat D, White NJ (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361:455–467

    Article  Google Scholar 

  • Babiker HA, Pringle SJ, Abdel-Muhsin A, Mackinnon M, Hunt P, Walliker D (2001) High level chloroquine resistance in Sudanese isolates of Plasmodium falciparum is associated with mutations in the chloroquine resistance transporter gene pfcrt and the multidrug resistance gene pfmdr1. J Infect Dis 183:1535–1538

    Article  CAS  PubMed  Google Scholar 

  • Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78:431–441

    Google Scholar 

  • Boniface PK, Pal A (2013) Substantiation of the ethnopharmacological use of Conyza sumatrensis (Retz.) E.H.Walker in the treatment of malaria through in vivo evaluation in Plasmodium berghei infected mice. J Ethnopharmacol 145:373–377

    Article  PubMed  Google Scholar 

  • Chakravarty AK (1957) Weed flora of paddy fields of West Bengal. Indian Agric 1:19–20

    Google Scholar 

  • Comley JCW (1990) New microfilaricidal leads from plants. Trop Med Parasitol 41:1–9

    CAS  PubMed  Google Scholar 

  • Cos P, Vlietinck AJ, Berghe DV, Maes L (2006) Antiinfective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol 106:290–302

    Article  CAS  PubMed  Google Scholar 

  • Ganesh D, Fuehrer H-P, Starzengrüber P, Swoboda P, Khan WA, Reismann JAB, Mueller MSK, Chiba P, Noedl H (2012) Antiplasmodial activity of flavonol quercetin and its analogues in Plasmodium falciparum: evidence from clinical isolates in Bangladesh and standardized parasite clones. Parasitol Res 110:2289–2295

    Article  PubMed  Google Scholar 

  • Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220

    Article  CAS  PubMed  Google Scholar 

  • Lambros C, Vanderberg JP (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol 65:418–420

    Article  CAS  PubMed  Google Scholar 

  • Murthy PK, Joseph SK, Murthy PSR (2011) Plant products in the treatment and control of filariasis and other helminth infections and assay systems for antifilarial/anthelmintic activity. Planta Med 77:647–661

    Article  CAS  PubMed  Google Scholar 

  • Omoregie ES, Sisodia BS (2011) In vitro antiplasmodial activity and cytotoxicity of leaf extracts from Jatropha tanjorensis. Pharmacologyonline 2:656–673

    Google Scholar 

  • Ramazani A, Zakeri S, Sardari S, Nastaran K, Djadidt ND (2010) In vitro and in vivo antimalarial activity of Boerhavia elegans and Solanum surattense. Malar J 9:124

    Article  PubMed Central  PubMed  Google Scholar 

  • Rieckmann KH, Campbell GH, Sax LJ, Mrema JE (1978) Drug sensitivity of Plasmodium falciparum: an in vitro microtechnique. Lancet 1:22–23

    Article  CAS  PubMed  Google Scholar 

  • Shu SXC, Haining Q, Graham S (2007) Ammannia Linnaeus, Sp. Pl. 1: 119. 1753. Flora China 13:275–276

    Google Scholar 

  • Simonsen HT, Nordskjold JB, Smitt UW, Nyman U, Palpu P, Joshi P, Varughese G (2001) In vitro screening of Indian medicinal plants for antiplasmodial activity. J Ethnopharmacol 74:195–204

    Article  CAS  PubMed  Google Scholar 

  • Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soh PN, Benoît-Vical F (2007) Are West African plants a source of future antimalarial drugs? J Ethnopharmacol 114:130–140

    Article  CAS  PubMed  Google Scholar 

  • Steele JC, Warhurst DC, Kirby GC, Simmonds MS (1999) Antimalarial activity of betulinic acid and derivatives in vitro against Plasmodium falciparum and in vivo in P. berghei-infected mice. Phytother Res 13:115–119

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay HC, Dwivedi GR, Darokar MP, Chaturvedi V, Srivastava SK (2012) Bioenhancing and anti-mycobacterial agents from Ammannia multiflora. Planta Med 78:79–81

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay HC, Thakur JP, Saikia D, Srivastava SK (2013a) Anti-tubercular agents from Ammannia baccifera (Linn.). Med Chem Res 22:16–21

    Article  CAS  Google Scholar 

  • Upadhyay HC, Sisodia BS, Verma RK, Darokar MP, Srivastava SK (2013b) Antiplasmodial potential of extracts from two species of genus Blumea. Pharm Biol. doi:10.3109/13880209.2013.790453

    PubMed  Google Scholar 

  • Verotta L, Agli MD, Giolito A, Guerrini M, Cabalion P, Bosisio E (2001) In vitro antiplasmodial activity of extracts of Tristaniopsis species and identification of the active constituents: ellagic acid and 3,4,5-trimethoxyphenyl-(6′-o-galloyl)-o-β-d-glucopyranoside. J Nat Prod 64:603–607

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Ohshita Y, Tsushida T (1997) Antioxidant compounds from Buckwheat (Fagopyrum esculentum Moench) Hulls. J Agric Food Chem 45:1039–1044

    Article  CAS  Google Scholar 

  • Weniger B, Robledo S, Arango GJ, Deharo E, Aragon R, Munoz V, Callapa J, Lobstein A, Anton R (2001) Antiprotozoal activities of Colombian plants. J Ethnopharmacol 78:193–200

    Article  CAS  PubMed  Google Scholar 

  • WHO-Factsheet on the World Malaria Report (2012) Available at http://www.who.int/malaria/media/world_malaria_report_2012_facts/en/index.html. Accessed 10 July 2013

  • Wright CW (2005) Plant derived antimalarial agents: new leads and challenges. Phytochem Rev 4:55–61

    Article  CAS  Google Scholar 

  • Wright CW, Phillipson JD (1990) Natural products and the development of selective anti protozoal drugs. Phytother Res 4:127–139

    Article  CAS  Google Scholar 

  • Yadav AK, Singh SC, Gupta MM (2012) A validated stability-indicating HPLC–PDA method for analysis of Desmodium gangeticum: an important ingredient of Ayurvedic drug ‘‘Dashmool’’. J Liq Chromatogr Relat Technol 35:1038–1052

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this research by CSIR project MLP-13 and UGC for providing fellowship to one of us (HCU) is gratefully acknowledged. We also thank all of our colleagues for their excellent assistance.

Conflict of Interest

The authors have declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh K. Srivastava.

Additional information

Harish C. Upadhyay and Brijesh S. Sisodia have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upadhyay, H.C., Sisodia, B.S., Agrawal, J. et al. Antimalarial potential of extracts and isolated compounds from four species of genus Ammannia . Med Chem Res 23, 870–876 (2014). https://doi.org/10.1007/s00044-013-0682-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0682-5

Keywords

Navigation