Skip to main content

Advertisement

Log in

Chem-bioinformatics and in vitro approaches for candidate optimization: a case study of NSC745689 as a promising antitumor agent

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The benzothiazole scaffold has been reported to have antitumor activity in tumor-sensitive cell lines by proposed mechanism of CYP1A1 induction. CYP1A1 has been shown to participate in metabolism of benzothiazole scaffold to its reactive metabolites. CYP1A1 has also been proposed as drug target for anti-cancer chemotherapy for its differential and selective overexpression in tumor cells. Herein, we have reported NSC745689 from the series of new pyrimidobenzothiazoles (NSC745689) for its promising antitumor activity against non-small cell lung cancer cell line in National Cancer Institute (NCI) 60 human cancer cell line screen. We confirmed CYP1A1 specificity for NSC745689 by ethoxyresorufin-O-dethylase (EROD) assay. Furthermore, we investigated the metabolism of NSC745689 using MetaSite software and quantum mechanical study. The necessary structural changes in NSC745689 scaffold to potentiate its CYP1A1 binding and antitumor activity were suggested using molecular docking and molecular dynamics analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Androutsopoulos VP, Papakyriakou A, Vourloumis D, Spandidos DA (2011) Comparative CYP1A1 and CYP1B1 substrate and inhibitor profile of dietary flavonoids. Bioorg Med Chem 19:2842–2849. doi:10.1016/j.bmc.2011.03.042

    Article  PubMed  CAS  Google Scholar 

  • Beck ME (2005) Do Fukui function maxima relate to sites of metabolism? A critical case study. J Chem Inf Model 45:273–282. doi:10.1021/ci049687n

    Article  PubMed  CAS  Google Scholar 

  • Boyer S, Zamora I (2002) New methods in predictive metabolism. Mol Divers 5:277–287. doi:10.1023/A:1021340717772

    Article  PubMed  Google Scholar 

  • Bradshaw TD, Westwell AD (2004) The development of the antitumour benzothiazole prodrug, phortress, as a clinical candidate. Curr Med Chem 11:1009–1021. doi:10.2174/0929867043455530

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw TD, Shi DF, Schultz RJ, Paull KD, Kelland L, Wilson A, Garner C, Fiebig HH, Wrigley S, Stevens MF (1998a) Influence of 2-(4-aminophenyl) benzothiazoles on growth of human ovarian carcinoma cells in vitro and in vivo. Br J Cancer 78:421–429. doi:10.1038/bjc.1998.510

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw TD, Wrigley S, Shi DF, Schultz RJ, Paull KD, Stevens MF (1998b) 2-(4-Aminophenyl) benzothiazoles: novel agents with selective profiles of in vitro anti-tumour activity. Br J Cancer 77:745–752. doi:10.1038/bjc.1998.122

    Article  PubMed  CAS  Google Scholar 

  • Braun W, Go N (1985) Calculation of protein conformations by proton–proton distance constraints: a new efficient algorithm. J Mol Biol 186:611–626. doi:10.1016/0022-2836(85)90134-2

    Article  PubMed  CAS  Google Scholar 

  • Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W (2008) AMBER 10. University of California, San Francisco

    Google Scholar 

  • Chen H, Hirao H, Derat E, Schlichting I, Shaik S (2008) Quantum mechanical/molecular mechanical study on the mechanisms of compound I formation in the catalytic cycle of chloroperoxidase: an overview on heme enzymes. J Phys Chem B 112:9490–9500. doi:10.1021/jp803010f

    Article  PubMed  CAS  Google Scholar 

  • Chobe SS, Dawane BS, Tumbi KM, Nandekar PP, Sangamwar AT (2012) An ecofriendly synthesis and DNA binding interaction study of some pyrazolo [1, 5-a] pyrimidines derivatives. Bioorg Med Chem Lett. doi:10.1016/j.bmcl.2012.10.027

    PubMed  Google Scholar 

  • Chua MS, Kashiyama E, Bradshaw T, Stinson SF, Brantley E, Sausville EA, Stevens MFG (2000) Role of CYP1A1 in modulation of antitumor properties of the novel agent 2-(4-Amino-3-methylphenyl)benzothiazole (DF 203, NSC 674495) in human breast cancer cells. Cancer Res 60:5196–5203

    PubMed  CAS  Google Scholar 

  • Cruciani G, Carosati E, De Boeck B, Ethirajulu K, Mackie C, Howe T, Vianello R (2005) MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. J Med Chem 48:6970–6979. doi:10.1021/jm050529c

    Article  PubMed  CAS  Google Scholar 

  • de Graaf C, Vermeulen NPE, Feenstra KA (2005) Cytochrome P450 in silico: an integrative modeling approach. J Med Chem 48:2725–2755. doi:10.1021/jm040180d

    Article  PubMed  Google Scholar 

  • Domingo LR, Chattaraj PK, Duley S (2012) Understanding local electrophilicity/nucleophilicity activation through a single reactivity difference index. Org Biomol Chem 10:2855–2861. doi:10.1039/C2OB06943A

    Article  PubMed  Google Scholar 

  • Efferth T, Dunstan H, Sauerbrey A, Miyachi H, Chitambar CR (2001) The anti-malarial artesunate is also active against cancer. Int J Oncol 18:767–774

    PubMed  CAS  Google Scholar 

  • Eilon GF, Gu J, Slater LM, Hara K, Jacobs JW (2000) Tumor apoptosis induced by epoxide-containing piperazines, a new class of anti-cancer agents. Cancer Chemother Pharmacol 45:183–191. doi:10.1007/s002800050028

    Article  PubMed  CAS  Google Scholar 

  • Fichtner I, Monks A, Hose C, Stevens MFG, Bradshaw TD (2004) The experimental antitumor agents phortress and doxorubicin are equiactive against human-derived breast carcinoma xenograft models. Breast Cancer Res Treat 87:97–107. doi:10.1023/B:BREA.0000041586.64371.88

    Article  PubMed  CAS  Google Scholar 

  • Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. doi:10.1021/jm0306430

    Article  PubMed  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC (2004) Gaussian 03. Gaussian. Inc., Wallingford

    Google Scholar 

  • Glendening ED, Reed AE, Carpenter JE, Weinhold F (1988) NBO, version 3.1. Sheldrick Siemens Energy & Automation, Inc, Madison

    Google Scholar 

  • Han C, Zhang J, Zheng M, Xiao Y, Li Y, Liu G (2011) An integrated drug-likeness study for bicyclic privileged structures: from physicochemical properties to in vitro ADME properties. Mol Divers 15:857–876. doi:10.1007/s11030-011-9317-2

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson I, Chua MS, Browne HL, Trapani V, Bradshaw TD, Westwell AD, Stevens MFG (2001) Antitumor benzothiazoles. 14. Synthesis and in vitro biological properties of fluorinated 2-(4-aminophenyl) benzothiazoles. J Med Chem 44:1446–1455. doi:10.1002/chin.200130136

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson I, Jennings SA, Vishnuvajjala BR, Westwell AD, Stevens MFG (2002) Antitumor benzothiazoles. 16.1 Synthesis and pharmaceutical properties of antitumor 2-(4-Aminophenyl) benzothiazole amino acid prodrugs. J Med Chem 45:744–747. doi:10.1021/jm011025r

    Article  PubMed  CAS  Google Scholar 

  • Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641. doi:10.1002/jcc.10128

    Article  PubMed  CAS  Google Scholar 

  • Jimonet P, Audiau F, Barreau M, Blanchard JC, Boireau A, Bour Y, Coléno MA, Doble A, Doerflinger G, Do Huu C (1999) Riluzole series. Synthesis and in vivo “antiglutamate” activity of 6-substituted-2-benzothiazolamines and 3-substituted-2-imino-benzothiazolines. J Med Chem 42:2828–2843. doi:10.1021/jm980202u

    Article  PubMed  CAS  Google Scholar 

  • Katagi T (1992) Application of molecular orbital calculations to the estimation of environmental and metabolic fates of pesticides. CRC Press, Boca Raton, pp 543–564

    Google Scholar 

  • Khomane KS, Nandekar PP, Wahlang B, Bagul P, Shaikh N, Pawar YB, Meena CL, Sangamwar AT, Jain R, Tikoo K (2012) Mechanistic insights into PEPT1-mediated transport of a novel antiepileptic, NP-647. Mol Pharm 9:2458–2468. doi:10.1021/mp200672d

    Article  PubMed  CAS  Google Scholar 

  • Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discovery 3:935–949. doi:10.1038/nrd1549

    Article  CAS  Google Scholar 

  • Labhsetwar LB, Shendarkar GR, Kuberkar SV (2010) Synthesis and in vitro anticancer activity of 8-chloro-3-cyano-4-imino-2-methylthio-4 h-pyrimido[2,1-b][1,3]benzothiazole and its 2-substituted derivatives. J Pharm Res Health Care 3:273–278

    Google Scholar 

  • Leong CO, Suggitt M, Swaine DJ, Bibby MC, Stevens MFG, Bradshaw TD (2004) In vitro, in vivo, and in silico analyses of the antitumor activity of 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazoles. Mol Cancer Ther 3:1565–1575

    PubMed  CAS  Google Scholar 

  • Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249. doi:10.1016/S1056-8719(00)00107-6

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Ericksen SS, Besspiata D, Fisher CW, Szklarz GD (2003) Characterization of substrate binding to cytochrome P450 1A1 using molecular modeling and kinetic analyses: case of residue 382. Drug Metab Dispos 31:412–420. doi:10.1124/dmd.31.4.412

    Article  PubMed  CAS  Google Scholar 

  • Loaiza-Pérez AI, Trapani V, Hose C, Singh SS, Trepel JB, Stevens MFG, Bradshaw TD, Sausville EA (2002) Aryl hydrocarbon receptor mediates sensitivity of MCF-7 breast cancer cells to antitumor agent 2-(4-amino-3-methylphenyl) benzothiazole. Mol Pharmacol 61:13–19. doi:10.1124/mol.61.1.13

    Article  PubMed  Google Scholar 

  • MacKerell AD, Bashford D, Bellott, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616. doi:10.1021/jp973084f

    Article  CAS  Google Scholar 

  • Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 83:757–766

    Article  PubMed  CAS  Google Scholar 

  • Mortimer CG, Wells G, Crochard JP, Stone EL, Bradshaw TD, Stevens MFG, Westwell AD (2006) Antitumor benzothiazoles. 26. 2-(3, 4-Dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon, and breast cancer cell lines. J Med Chem 49:179–185. doi:10.1021/jm050942k

    Article  PubMed  CAS  Google Scholar 

  • Nandekar PP, Sangamwar AT (2012) Cytochrome P450 1A1-mediated anticancer drug discovery: in silico findings. Expert Opin Drug Discov 7:771–789. doi:10(1517/17460441).2012.698260

    Article  PubMed  CAS  Google Scholar 

  • O’Brien SE, Browne HL, Bradshaw TD, Westwell AD, Stevens MFG, Laughton CA (2003) Antitumor benzothiazoles. Frontier molecular orbital analysis predicts bioactivation of 2-(4-aminophenyl) benzothiazoles to reactive intermediates by cytochrome P4501A1. Org Biomol Chem 1:493–497. doi:10.1039/B209067H

    Article  PubMed  Google Scholar 

  • Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855. doi:10.1021/ja00005a072

    Article  CAS  Google Scholar 

  • Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85. doi:10.1016/S0065-3233(03)66002-X

    Article  PubMed  CAS  Google Scholar 

  • Pratihar S, Roy S (2010) Nucleophilicity and site selectivity of commonly used arenes and heteroarenes. J Org Chem 75:4957–4963. doi:10.1021/jo100425a

    Article  PubMed  CAS  Google Scholar 

  • QikProp, version 3.2,(2009) Schrödinger, LLC, New York

  • Reid DL, Calvitt CJ, Zell MT, Miller KG, Kingsmill CA (2004) Early prediction of pharmaceutical oxidation pathways by computational chemistry and forced degradation. Pharm Res 21:1708–1717. doi:10.1023/B:PHAM.0000041469.96466.12

    Article  PubMed  CAS  Google Scholar 

  • Retegan M, Milet A, Jamet Hln (2009) Exploring the binding of inhibitors derived from tetrabromobenzimidazole to the CK2 protein using a QM/MM-PB/SA approach. J Chem Inf Model 49:963–971. doi:10.1021/ci8004435

    Article  PubMed  CAS  Google Scholar 

  • Rivera MI, Stinson SF, Vistica DT, Jorden JL, Kenney S, Sausville EA (1999) Selective toxicity of the tricyclic thiophene NSC 652287 in renal carcinoma cell lines: differential accumulation and metabolism. Biochem Pharmacol 57:1283–1295. doi:10.1016/S0006-2952(99)00046-5

    Article  PubMed  CAS  Google Scholar 

  • Rosales-Hernandez MC, Mendieta-Wejebe JE, Trujillo-Ferrara JG, Correa-Basurto J (2010) Homology modeling and molecular dynamics of CYP1A1 and CYP2B1 to explore the metabolism of aryl derivatives by docking and experimental assays. Eur J Med Chem 45:4845–4855. doi:10.1016/j.ejmech.2010.07.055

    Article  PubMed  CAS  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815. doi:10.1016/S1357-4310(95)91170-7

    Article  PubMed  CAS  Google Scholar 

  • Sangamwar AT, Labhsetwar LB, Kuberkar S (2008) Exploring CYP1A1 as anticancer target: homology modeling and in silico inhibitor design. J Mol Model 14:1101–1109. doi:10.1007/s00894-008-0354-4

    Article  PubMed  CAS  Google Scholar 

  • Shaik S, Kumar D, De Visser SP (2008) A valence bond modeling of trends in hydrogen abstraction barriers and transition states of hydroxylation reactions catalyzed by cytochrome P450 enzymes. J Am Chem Soc 130:10128–10140. doi:10.1021/ja8019615

    Article  PubMed  CAS  Google Scholar 

  • Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W (2009) P450 enzymes: their structure, reactivity, and selectivity-modeled by qm/mm calculations. Chem Rev 110:949–1017. doi:10.1021/cr900121s

    Article  Google Scholar 

  • Shi DF, Bradshaw TD, Wrigley S, McCall CJ, Lelieveld P, Fichtner I, Stevens MFG (1996) Antitumor benzothiazoles. 3. Synthesis of 2-(4-aminophenyl) benzothiazoles and evaluation of their activities against breast cancer cell lines in vitro and in vivo. J Med Chem 39:3375–3384. doi:10.1021/jm011025r

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813–823. doi:10.1038/nrc1951

    Article  PubMed  CAS  Google Scholar 

  • Thanikaivelan P, Subramanian V, Raghava Rao J, Unni Nair B (2000) Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chem Phys Lett 323:59–70

    Article  CAS  Google Scholar 

  • Trapani V, Patel V, Leong CO, Ciolino HP, Yeh GC, Hose C, Trepel JB, Stevens MFG, Sausville EA, Loaiza-Perez AI (2003) DNA damage and cell cycle arrest induced by 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203, NSC 703786) is attenuated in aryl hydrocarbon receptor deficient MCF-7 cells. Br J Cancer 88:599–605. doi:10.1038/sj.bjc.6600722

    Article  PubMed  CAS  Google Scholar 

  • Warren GL, Andrews CW, Capelli A-M, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS (2005) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931. doi:10.1021/jm050362n

    Article  Google Scholar 

  • Zheng M, Luo X, Shen Q, Wang Y, Du Y, Zhu W, Jiang H (2009) Site of metabolism prediction for six biotransformations mediated by cytochromes P450. Bioinformatics 25:1251–1258

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Parr RG (1990) Activation hardness: new index for describing the orientation of electrophilic aromatic substitution. J Am Chem Soc 112:5720–5724. doi:10.1021/ja00171a007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Department of Biotechnology (DBT), New Delhi.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay T. Sangamwar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4529 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandekar, P.P., Tumbi, K.M., Bansal, N. et al. Chem-bioinformatics and in vitro approaches for candidate optimization: a case study of NSC745689 as a promising antitumor agent. Med Chem Res 22, 3728–3742 (2013). https://doi.org/10.1007/s00044-012-0364-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0364-8

Keywords

Navigation