Skip to main content
Log in

Quercetin and taxifolin completely break MDM2–p53 association: molecular dynamics simulation study

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Inhibition of the MDM2–p53 interaction has been becomes a new therapeutic strategy to activate wild-type p53 in tumors. Molecular dynamics (MD) simulations were used to study the effects of quercetin and taxifolin on MDM2–p53 complex. We found that binding of ligands (quercetin and taxifolin) led to the dissociation of MDM2–p53 complex. Analyses of the hydrophobic contacts between the inhibitors and MDM2–p53 were performed, and the results suggested that these ligands form stable hydrophobic interactions with MDM2 which led to complete disruption of MDM2–p53 hydrophobic interactions and dissociation of p53 from the complex. Our study suggests that the pi–pi stacking between Tyr 51 of MDM2 and aromatic rings of ligands is the critical event in MDM2–p53 dissociation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Accelrys Software Inc (2011) Discovery studio modeling environment, release 3.1, San Diego

  • Allen JG, Bourbeau MP, Wohlhieter GE (2009) Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse double minute 2-tumor protein 53 protein–protein interaction. J Med Chem 52:7044–7053

    Article  PubMed  CAS  Google Scholar 

  • Bautista AD, Appelbaum JS, Craig CJ et al (2010) Bridged α3- peptide Inhibitors of p53–hDM2 complexation: correlation between affinity and cell permeability. J Am Chem Soc 132:2904–2906

    Article  PubMed  CAS  Google Scholar 

  • Berendsen HJC, Van der Spoel D, Van Drunen R (1995) GROMACS—A Message-passing parallel molecular dynamics implementation. Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  • Bharatham N, Chi S, Yoon HS (2011) Molecular basis of Bcl-XL-p53 interaction: insights from molecular dynamics simulations. 6:e26014

  • Chen J, Wang J, Xu B et al (2011) Insight into mechanism of small molecule inhibitors of the MDM2–p53 interaction: molecular dynamics simulation and free energy analysis. J Mol Graph Model 30:46–53

    Article  PubMed  CAS  Google Scholar 

  • Chene P (2003) Inhibiting the p53–MDM2 interaction: an important target for cancer. Clin Cancer Res 14:5318–5324

    Google Scholar 

  • Dastidar SG, Lane DP, Verma CS (2009) Modulation of p53 binding to MDM2: computational studies reveal important role of Tyr 100, BMC bioinformatics Proceedings

  • Espinoza-FonsecaJose LM, García-Machorro J (2008) Aromatic–aromatic interactions in the formation of the MDM2–p53 complex. Biochem Biophys Res Comm 370:547–551

    Article  Google Scholar 

  • Espinoza-FonsecaJose LM, Trujillo-Ferrara G (2006) Conformational changes of the p53-binding cleft of MDM2 revealed by molecular dynamics simulations. Biopolymers 83:365–373

    Article  Google Scholar 

  • Fasan R, Dias RLA, Moehle K et al (2004) Using a ß-hairpin to mimic alpha-helix-novel cyclic peptidomimetic inhibitors of the p53–HDM2 protein–protein interaction. Angew Chem Int Ed 43:2109–2112

    Article  CAS  Google Scholar 

  • Koblish HK, Zhao S, Franks CF et al (2006) Benzodiazepinedione inhibitors of the Hdm2: p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo. Mol Cancer Ther 5:160–169

    Article  PubMed  CAS  Google Scholar 

  • Kritzer JA, Lear JD, Hodsdon ME, Schepartz A (2004) Helical α-peptide inhibitors of the p53–hDM2 interaction. J Am Chem Soc 126:9468–9469

    Article  PubMed  CAS  Google Scholar 

  • Lee SB, Cha KH, Selenge D et al (2007) The Chemopreventive Effect of Taxifolin Is Exerted through ARE-Dependent Gene Regulation. Biol Pharm Bull 30:1074–1079

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ (1997) P53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  • Lindah E, Hess B, Van der Spoel D (2001) Gromacs 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    Google Scholar 

  • Moll UM, Petrenko O (2003) The MDM2-p53 Interaction. Mol Cancer Res 1:1001–1008

    PubMed  CAS  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS (1998) Automated Docking Using a Lamarckian Genetic Algorithm and Empirical Binding Free Energy Function. J Comp Chem 19:1639–1662

    Article  CAS  Google Scholar 

  • Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  PubMed  CAS  Google Scholar 

  • Popowicz GM, Czarna A, Wolf S et al (2010) Structure of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53–MDMX/MDM2 antagonist drug discovery. Cell Cycle 9:1104–1111

    Article  PubMed  CAS  Google Scholar 

  • Schuttelkopf AW, van Aalten (2004) DMF PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr 60:1355–1363

    Google Scholar 

  • Seufi AM, Ibrahim SS, Elmaghraby TK et al (2009) Preventive effect of the flavonoid, quercetin, on hepatic cancer in rats via oxidant/antioxidant activity: molecular and histological evidences. J Exp Clin Cancer Res 28:80. doi:10.1186/1756-9966-28-80

    Article  PubMed  Google Scholar 

  • Shangary S, Wang SM (2008) Targeting the MDM2–p53 interaction for cancer therapy. Clin Cancer Res 14(17):5318–5324

    Article  PubMed  CAS  Google Scholar 

  • Shangary S, Wang SM (2009) Small-molecule inhibitors of the MDM2–p53 protein–protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol 49:223–241

    Article  PubMed  CAS  Google Scholar 

  • Stoll R, Renner C, Hansen S et al (2001) Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochem 40:336–344

    Article  CAS  Google Scholar 

  • Van Gunsteren WF, Billeter SR, Eising AA et al (1996) Biomolecular simulation: the GROMOS96 manual and user guide. Vdf Hochschulverlag AG, Zurich

    Google Scholar 

  • Van Gunsteren WF, Daura X, Mark AE (1998) The GROMOS force field. In: Von Rague Schleyer P (ed) Encyclopedia of computational chemistry, vol 2. Wiley and Sons, Chichester, pp 1211–1216

  • Vassilev LT, Vu BT, Graves B et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) The p53 tumour-suppressor gene integrates numerous signals that control cell life and death, as when a highly connected node in the Internet breaks down, the disruption of p53 has severe consequences. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Wang M, Chen J et al (2002) The initial evaluation of non-peptidic small-molecule HDM2 inhibitors based on p53–HDM2 complex structure. Cancer Lett 183:69–77

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (Sharad Verma) is thankful to the Council of Scientific and Industrial Research (CSIR), India for providing Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abha Mishra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, S., Singh, A. & Mishra, A. Quercetin and taxifolin completely break MDM2–p53 association: molecular dynamics simulation study. Med Chem Res 22, 2778–2787 (2013). https://doi.org/10.1007/s00044-012-0274-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0274-9

Keywords

Navigation