Skip to main content
Log in

Computer simulation of the in vitro and in vivo anti-inflammatory activities of dihydropyrimidines acid derivatives through the inhibition of cyclooxygenase-2

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Simulation of virtually designed 20 compounds as COX-2 inhibitors using molecular modelling of protein–ligand interactions to predict drug structure–activity relationship was performed in this study. A synthetic route with a rational chemical approach to (E)-2-oxo-(thio)-4-substituted phenyl-6-styryl-1,2,3,4-tetrahydro-pyrimidine-5-caboxylic acid was designed and demonstrated. A comparative analysis of antimetabolite drug and corresponding metabolites (virtually designed compounds) provided a better understanding of rational drug design. COX-1(pdb entry: 1eqg) and COX-2(pdb entry: 6cox) enzymes docked with novel ligands were evaluated for binding energies. Lead optimization was performed by computational simulation: methoxy-substituted analogues displayed the highest negative ligand–protein-binding energies. These results prompted us to evaluate in vivo anti-inflammatory activity by carrageenan-induced paw oedema test in rats at a dose of 100 mg/kg. Ibuprofen was administered as standard drug. Lead compounds having significant activity were tested for in vitro cyclooxygenase isoenzyme inhibition assay and found to be more selective towards COX-2 as indicated by COX-2 selective index. The objective of our research is to accept the challenge of discovery of new drug. To ensure the desired target specificity and potency, bioavailability and lack of toxicity, our approach stems out lead generation from virtual screening to their synthesis and ends up with biological assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal SK, Tadiparthi R, Aggarwal P, Shivakumar S (2003) PCT Int. Appl. WO 2003084936, Chem Abstr 139: 323529

    Google Scholar 

  • Argus Lab 4.0.1 docking software (2010). http://www.arguslab.coms. Accessed May 2011

  • Atwal KS, Rovnyak GC, O’Reilly BC, Schwartz J (1989) Substituted 1,4 dihydropyrimidines. Synthesis of selectively functionalised 2-hetero 1,4 dihydropyrimidines. J Org Chem 54:5898

    Google Scholar 

  • Atwal KS, Swanson BN, Unger SE, Floyd DM, Morel S, Hedberg A, O’Reilly BC (1991) Dihydropyrimidine calcium channel blockers. 3.3-Carbamoyl-4-aryl-1,2,3,4 tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J Med Chem 34:806–811

    Article  PubMed  CAS  Google Scholar 

  • Bahekar SS, Shinde DB (2003) Synthesis and anti-inflammatory activity of some [2-amino-6-(4-substituted aryl)-4-(4-substituted phenyl)-1,6-dihydropyrimidine-5-yl] acetic acid derivatives. Acta Pharm 53:223–229

    PubMed  CAS  Google Scholar 

  • Bhattacharyya DK, Lecomte M, Rieke CJ, Garavito MR, Smith WL (1996) The role of arginine120 of human prostaglandin endoperoxide H synthase-2 in the interaction with fatty acid substrates and inhibitors. J Biol Chem 271:2179

    Article  PubMed  CAS  Google Scholar 

  • Biginelli P (1893) The urea–aldehyde derivatives of actiacetic esters. Gazz Chim Ital 23:360–416

    Google Scholar 

  • Bruno O, Brullo C, Ranise A, Schenone S, BondAvalls S, Barocelli E, Ballabeni V, Chiavarini M, Tognolini M, Impicciatore M (2001) Synthesis and pharmacological evaluation of 2,5-cycloamino-5H-[1]benzopyrano[4,3-d] pyrimidines endowed with in vitro antiplatelet activity. Bioorg Med Chem Lett 11:1397

    Article  PubMed  CAS  Google Scholar 

  • Carter MC, Naylor A, Payne JJ, Pegg NA (2003) PCT Int. Appl. WO 2003014091 Chem Abstr 138:187783

    Google Scholar 

  • Clare M, Hagen TJ, Houdek SC, Lennon PJ, Weier RM, Xu X (2005) PCT Int. Appl. WO 2005040133 Chem Abstr 142: 463736

    Google Scholar 

  • Chemdraw 3D Ultra software (2008). Accessed May 2011 www.cambridgesoft.com

  • Dannhart G, Kiefer W (2001) Cyclooxygenase inhibitors—current status and future prospects. Eur J Med Chem 36:109–126

    Article  Google Scholar 

  • Prasit P, Wang Z, Brideau CC, Chan S, Charleson S, Cromlish W, Ethier D, Ford- Hutchinson, JFA, Evans W, Gauthier JY, Gordon R, Guay J, Kargman M,Gresser S, Kennedy B, Leblanc Y, Leger S P, Mancini GP, O’Neill, Ouellet M, Percival MD, Perrier H, Riendeau D, Rodger, Tagari P, M′rien The, Vickers P, Wong E, Xu LJ, Young RN, Zamboni R (1999) The discovery of rofecoxib [MK 966,VIOXX-4-(4′-methyls ulfo nyl phenyl)-3-p-phenyl-2(5H)-furan one)] an orally active cyclooxygenase-2 inhibitors. Bioorg Med Chem Lett 9: 1773–1779

  • Franklin AS, Ly SK, Mackin GH, Overman LE, Shaka AJ (1999) Application of the tethered biginelli reaction for enantioselective synthesis of batzelladine alkaloids. Absolute configuration of the tricyclic guanidine portion of batzelladine. J Org Chem 64:1512–1519

    Article  PubMed  CAS  Google Scholar 

  • Greig GM, Francis DA, Falgueyret J-P, Ouellet M, Percival MD, Roy P, Bayly C, Mancini JA, O’Neill GP (1997) The interaction of arginine106 of human prostaglandin G/H synthase-2 with inhibitors is not a universal component of inhibition mediated by nonsteroidal anti-inflammatory drugs. Mol Pharmacol 52:829–838

    PubMed  CAS  Google Scholar 

  • Hill MR, Holland SJ, Pearson SL, Yeates KT (2004) PCT Int. Appl. WO 2004048344 Chem Abstr 141:38626

    Google Scholar 

  • Kalgutkar A, Marnett AB, Crews B, Remmel RP, Marnett LJ (2000) Ester and amide drivatives of nonstereroidal anti-inflammatory drugs, indomethacin, as selective cyclooxygenase-2 inhibitors. J Med Chem 43:2860–2870

    Article  PubMed  CAS  Google Scholar 

  • Kappe CO (1993) 100 years of the Biginelli dihydropyrimidine synthesis. Tetrahedron 49:6937–6963

    Article  CAS  Google Scholar 

  • Kappe CO (2000) Biologically active dihydropyrimidones of the Biginelli-type—a literature survey. Eur J Med Chem 35:1043–1052

    Article  PubMed  CAS  Google Scholar 

  • Kurumbail RG, Stevens AM, Gierse JK, McDonald J, Stegeman RA (1996) Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384:644–648

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Lopez, Bajpai M, Siegmund AC (2005) U.S. Pat. Appl. Publ. US 2004-923067 Chem Abstr 142261550

  • Loll PJ, Picot D, Garavito RM (1995) The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase. Nature Struct Biol 2:637

    Article  PubMed  CAS  Google Scholar 

  • Loll PJ, Picot D, Ekabo O, Garavito RM (1996) Synthesis and use of iodinated non steroidal anti-inflammatory drug analogs as crystallographic probes of prostaglandin H2 synthase cyclooxygenase. Biochemistry 35:7330

    Article  PubMed  CAS  Google Scholar 

  • Lozano JJ, Pouplana R, Ruiz J (1997) Molecular electrostatic potential in differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) by non-steroidal antiinflammatory drug. J Mol Struct (Theochem) 397:59

    Article  CAS  Google Scholar 

  • Mokale SN, Shinde SS, Elgire RD, Sangshetti JN, Shinde DB (2010) Synthesis and anti- inflammatory activity of some 3-(4,6-disubtituted-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl) propanoic acid derivatives. Bioorg Med Chem Lett 20:4424–4426

    Article  PubMed  CAS  Google Scholar 

  • Moreau A, Chen QH, Praveen Rao PN, Knaus EE (2006) Design, synthesis and biological evaluation of (E)-3-(4-methanesulfonylphenyl)-2-(aryl)acrylic acids as dual inhibitors of cyclooxygenases and lipoxygenases. Bioorg Med Chem 14:7716–7727

    Article  PubMed  CAS  Google Scholar 

  • Mukinsty DW, Reading EH (1994) Derivatives on experimental murine poliomyelitis Studies on the chemotherapy of experimental virus infections. The effect of certain pyrimidine. J Frankl Inst 237:422

    Google Scholar 

  • Ouellet M, Percival D (1995) Effect of inhibitor time-dependency on selectivity towards cyclooxygenase isoforms. Biochem J 306:247

    PubMed  Google Scholar 

  • Picot D, Loll PJ, Garavito RM (1994) The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature 367:243

    Article  PubMed  CAS  Google Scholar 

  • Pouplana R, Pérez C, Sánchez J, Lozano JJ, Puig-Parellada P (1999) The structural and electronical factors that contribute affinity for the time-dependent inhibition of PGHS-1 by indomethacin, diclofenac and fenamates. J Comput Aided Mol Des 13:297

    Article  PubMed  CAS  Google Scholar 

  • Selinsky BS, Gupta K, Sharkey CT, Loll PJ (2001) Structural analysis of NSAID binding by prostaglandin H2 synthase: time-dependent and time-independent inhibitors elicit identical enzyme conformations. Biochemistry 40:5172–5180

    Article  PubMed  CAS  Google Scholar 

  • Shutalev AD, Aksionov AN (2005) Simple synthesis of 4-aryl-6-styryl-1,2,3,4 tetrahydropyrimidin-2-ones by alkaline hydrolysis of Biginelli compound. Mendeleev Commun 15:73–75

    Article  Google Scholar 

  • Sondhi SM, Goyal RN, Lahoti AM, Singh N, Shukla R, Raghubir R (2005) Synthesis and biological evaluation of 2-thiopyrimidine derivatives. Bioorg Med Chem 13:3185

    Article  PubMed  CAS  Google Scholar 

  • Steel TG, Coburn CA, Patane MA, Bock MG (1998) Expedient synthesis of 5-unsubstituted 3,4 dihyropyrimidin-2(1H)-ones. Tetrahedron Lett 39:9315–9318

    Article  Google Scholar 

  • Uddin MJ, Praveen Rao PN, Knaus EE (2004) Design and synthesis of acyclic triaryl (Z) olefins: a novel class of cyclooxygenase (COX-2) inhibitors. Bioorg Med Chem 12:5929–5940

    Article  PubMed  CAS  Google Scholar 

  • Wang Renxiao, Fang Xueliang, Yipin Lu (2004) The PDB bind database: collection of binding affinities for protein–ligand complexes with known three dimensional structures. J Med Chem 47:2977–2980

    Article  PubMed  CAS  Google Scholar 

  • Winter CA, Risley EA, Nuss GW (1962) Carrageenin induced oedema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med 111:544–554

    PubMed  CAS  Google Scholar 

  • Zigeuner G, Knopp C, Blaschke H (1976) Tetrahydro-6-methyl and -6-phenyl-2-oxopyrimidin-5-carboxylic acids and derivatives. Monatsh Chem 107:587–603

    Article  CAS  Google Scholar 

Download references

Acknowledgments

RPD is grateful to the UGC, New Delhi for financial assistance under Faculty Improvement Program of XI plan. The authors are thankful to the SAIF, Chandigarh for 1HNMR, 13CNMR, CHN, Mass spectral analysis and also thankful to the Department of Pharmacy, Nagpur for IR spectral analysis. The authors also thank the Director, Institute of Science, Nagpur for providing lab facilities, and the CDRI Lucknow for in vivo anti-inflammatory activity.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anjali M. Rahatgaonkar or Ashutosh Tiwari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhankar, R., Rahatgaonkar, A.M., Shukla, R. et al. Computer simulation of the in vitro and in vivo anti-inflammatory activities of dihydropyrimidines acid derivatives through the inhibition of cyclooxygenase-2. Med Chem Res 22, 2493–2504 (2013). https://doi.org/10.1007/s00044-012-0244-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0244-2

Keywords

Navigation