Skip to main content

Advertisement

Log in

Bioactive xanthones with effect on P-glycoprotein and prediction of intestinal absorption

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Our research group has been focusing in the discovery of potential antitumor small molecules based on the xanthone scaffold. However, a serious obstacle in the field of cancer therapy is the multidrug resistance (MDR) phenotype, most often caused by the overexpression of P-glycoprotein (P-gp). Another limitation to development of such drug candidates is the reduced information available about the bioavailability of these compounds. We have previously identified four interesting compounds as inhibitors of tumor cell growth namely two dihydroxyxanthones, a xanthonolignoid and a pyranoxanthone. Based on these considerations, it was our aim to: (i) investigate their effect on the P-gp activity; and (ii) estimate their intestinal absorption using Caco-2 cell monolayers as an intestinal model. An HPLC analysis from the in vitro permeation assay with Caco-2 cells monolayer was performed to predict the intestinal permeability of xanthonic derivatives. A rhodamine (Rh123) accumulation assay using P-gp overexpressing leukemia cells, K562Dox, incubated with the four xanthonic derivatives, was performed to investigate their P-gp inhibitory activity. A luminescence-based ATPase assay was performed to differentiate between competitive and noncompetitive P-gp inhibitors. The xanthonolignoid and the pyranoxanthone were found to increase the accumulation of Rh123 in K562Dox cell line, and both were acting by a noncompetitive P-gp inhibitory mechanism. Transport of the four xanthones occurred in the absorptive direction (Papp, 0.012–2.8 nm/s). The behavior of the xanthonolignoid and the pyranoxanthone as P-gp inhibitors and their high apparent permeability coefficients make them promising hit compounds to pursue with further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balimane PV, Han YH, Chong S (2006) Current industrial practices of assessing permeability and P-glycoprotein interaction. AAPS J 8(1):E1–E13. doi:10.1208/aapsj080101

    Article  PubMed  CAS  Google Scholar 

  • Boumendjel A, Di Pietro A, Dumontet C, Barron D (2002) Recent advances in the discovery of flavonoids and analogs with high-affinity binding to P-glycoprotein responsible for cancer cell multidrug resistance. Med Res Rev 22(5):512–529. doi:10.1002/med.10015

    Article  PubMed  CAS  Google Scholar 

  • Camenisch G, Alsenz J, van de Waterbeemd H, Folkers G (1998) Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs’ lipophilicity and molecular weight. Eur J Pharm Sci 6(4):317–324. doi:S0928098797100197 [pii]

    PubMed  CAS  Google Scholar 

  • Eddershaw PJ, Beresford AP, Bayliss MK (2000) ADME/PK as part of a rational approach to drug discovery. Drug Discov Today 5(9):409–414. doi:S1359-6446(00)01540-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Ford JM (1996) Experimental reversal of P-glycoprotein-mediated multidrug resistance by pharmacological chemosensitisers. Eur J Cancer 32A(6):991–1001

    Article  PubMed  CAS  Google Scholar 

  • Goda K, Bacso Z, Szabo G (2009) Multidrug resistance through the spectacle of P-glycoprotein. Curr Cancer Drug Targets 9(3):281–297

    Article  PubMed  CAS  Google Scholar 

  • Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2(1):48–58. doi:10.1038/nrc706

    Article  PubMed  CAS  Google Scholar 

  • He Y, Zeng S (2005) Transport characteristics of rutin deca (H-) sulfonate sodium across Caco-2 cell monolayers. J Pharm Pharmacol 57(10):1297–1303. doi:10.1211/jpp.57.10.0008

    Article  PubMed  CAS  Google Scholar 

  • Hennessy M, Spiers JP (2007) A primer on the mechanics of P-glycoprotein the multidrug transporter. Pharmacol Res 55(1):1–15. doi:10.1016/j.phrs.2006.10.007 S1043-6618(06)00189-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  • ICH harmonised tripartite guideline (2005) Validation of analytical procedures: text and methodology Q2(R1). International Conference on Harmonization. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf. Accessed 27 August 2012

  • Johnson D (1999) The discovery-development interface has become the new interfacial phenomenon. Drug Discov Today 4(12):535–536. doi:S1359-6446(99)01423-3 [pii]

    Article  PubMed  Google Scholar 

  • Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455(1):152–162. doi:0005-2736(76)90160-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Kostakis IK, Tenta R, Pouli N, Marakos P, Skaltsounis A-L, Pratsinis H, Kletsas D (2005) Design, synthesis, and antiproliferative activity of some novel aminosubstituted xanthenones, able to overcome multidrug resistance toward MES-SA/Dx5 cells. Bioorg Med Chem Lett 15(22):5057–5060

    Article  PubMed  CAS  Google Scholar 

  • Levy E, Mehran M, Seidman E (1995) Caco-2 cells as a model for intestinal lipoprotein synthesis and secretion. FASEB J 9(8):626–635

    PubMed  CAS  Google Scholar 

  • Litman T, Zeuthen T, Skovsgaard T, Stein WD (1997) Competitive, non-competitive and cooperative interactions between substrates of P-glycoprotein as measured by its ATPase activity. Biochim Biophys Acta 1361(2):169–176. doi:S0925-4439(97)00027-6 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Loo TW, Clarke DM (2000) Identification of residues within the drug-binding domain of the human multidrug resistance P-glycoprotein by cysteine-scanning mutagenesis and reaction with dibromobimane. J Biol Chem 275(50):39272–39278. doi:10.1074/jbc.M007741200 M007741200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Maitrejean M, Comte G, Barron D, El Kirat K, Conseil G, Di Pietro A (2000) The flavanolignan silybin and its hemisynthetic derivatives, a novel series of potential modulators of P-glycoprotein. Bioorg Med Chem Lett 10(2):157–160. doi:S0960-894X(99)00636-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81(1 Suppl):230S–242S. doi:81/1/230S [pii]

    PubMed  CAS  Google Scholar 

  • Paiva A, Sousa M, Camões A, Nascimento M, Pinto M (2011) Prenylated xanthones: antiproliferative effects and enhancement of the growth inhibitory action of 4-hydroxytamoxifen in estrogen receptor-positive breast cancer cell line. Med Chem Res 1-7. doi:10.1007/s00044-011-9562-z

  • Palmeira A, Paiva A, Sousa E, Seca H, Almeida GM, Lima RT, Fernandes MX, Pinto M, Vasconcelos MH (2010) Insights into the in vitro antitumor mechanism of action of a new pyranoxanthone. Chem Biol Drug Des 76(1):43–58

    Article  PubMed  CAS  Google Scholar 

  • Palmeira A, Rodrigues F, Sousa E, Pinto M, Vasconcelos MH, Fernandes MX (2011) New uses for old drugs: pharmacophore-based screening for the discovery of P-glycoprotein inhibitors. Chem Biol Drug Des 78(1):57–72. doi:10.1111/j.1747-0285.2011.01089.x

    Article  PubMed  CAS  Google Scholar 

  • Palmeira A, Vasconcelos MH, Paiva A, Fernandes MX, Pinto M, Sousa E (2012) Design of dual inhibitors of P-glycoprotein and tumor cell growth: (re)discovering thioxanthones. Biochem Pharmacol 83:57–68. doi:10.1016/j.bcp.2011.10.004

    Google Scholar 

  • Pedro M, Cerqueira F, Sousa ME, Nascimento MS, Pinto M (2002) Xanthones as inhibitors of growth of human cancer cell lines and their effects on the proliferation of human lymphocytes in vitro. Bioorg Med Chem 10(12):3725–3730. doi:S0968089602003796 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Pinto MM, Sousa ME, Nascimento MS (2005) Xanthone derivatives: new insights in biological activities. Curr Med Chem 12(21):2517–2538

    Article  PubMed  CAS  Google Scholar 

  • Sankaran B, Bhagat S, Senior AE (1997) Photoaffinity labelling of P-glycoprotein catalytic sites. FEBS Lett 417(1):119–122. doi:S0014-5793(97)01268-4 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Saraiva L, Fresco P, Pinto E, Sousa E, Pinto M, Goncalves J (2002) Synthesis and in vivo modulatory activity of protein kinase C of xanthone derivatives. Bioorg Med Chem 10(10):3219–3227. doi:S0968089602001694 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Saraiva L, Fresco P, Pinto E, Sousa E, Pinto M, Goncalves J (2003a) Inhibition of alpha, betaI, delta, eta, and zeta protein kinase C isoforms by xanthonolignoids. J Enzyme Inhib Med Chem 18(4):357–370

    Article  PubMed  CAS  Google Scholar 

  • Saraiva L, Fresco P, Pinto E, Sousa E, Pinto M, Goncalves J (2003b) Inhibition of protein kinase C by synthetic xanthone derivatives. Bioorg Med Chem 11(7):1215–1225. doi:S0968089602006417 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Serra H, Mendes T, Bronze MR, Simplicio AL (2008) Prediction of intestinal absorption and metabolism of pharmacologically active flavones and flavanones. Bioorg Med Chem 16(7):4009–4018. doi:10.1016/j.bmc.2008.01.028 S0968-0896(08)00045-X [pii]

    Article  PubMed  CAS  Google Scholar 

  • Sousa EP, Silva AMS, Pinto MMM, Pedro MM, Cerqueira FAM, Nascimento MSJ (2002) Isomeric kielcorins and dihydroxyxanthones: synthesis, structure elucidation, and inhibitory activities of growth of human cancer cell lines and on the proliferation of human lymphocytes in vitro. Helv Chim Acta 85(9):2862–2876. doi:10.1002/1522-2675(200209)85:9<2862:aid-hlca2862>3.0.co;2-r

    Article  CAS  Google Scholar 

  • Sousa MEl, Afonso CMM, Pinto MMM (2003) Quantitative analysis of kielcorins in biomimetic synthesis by liquid chromatography/UV detection. J Liq Chromatogr Relat Technol 26(1):29–41

    Article  CAS  Google Scholar 

  • Sousa E, Paiva A, Nazareth N, Gales L, Damas AM, Nascimento MSJ, Pinto M (2009) Bromoalkoxyxanthones as promising antitumor agents: synthesis, crystal structure and effect on human tumor cell lines. Eur J Med Chem 44(9):3830–3835

    Article  PubMed  CAS  Google Scholar 

  • Tchamo DN, Dijoux-Franca MG, Mariotte AM, Tsamo E, Daskiewicz JB, Bayet C, Barron D, Conseil G, Di Pietro A (2000) Prenylated xanthones as potential P-glycoprotein modulators. Bioorg Med Chem Lett 10(12):1343–1345. doi:S0960-894X(00)00234-1 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Teixeira M, Afonso CMM, Pinto MM, Barbosa CM (2008) Development and validation of an HPLC method for the quantitation of 1,3-dihydroxy-2-methylxanthone in biodegradable nanoparticles. J Chromatogr Sci 46:472–478

    PubMed  CAS  Google Scholar 

  • US Pharmacopoeia 24/National Formulary 19, United States Pharmacopeial Convention (1995), vol p.2149, section 1225. Rockville

  • Wang EJ, Casciano CN, Clement RP, Johnson WW (2000) In vitro flow cytometry method to quantitatively assess inhibitors of P-glycoprotein. Drug Metab Dispos 28(5):522–528

    PubMed  CAS  Google Scholar 

  • Yamashita S, Furubayashi T, Kataoka M, Sakane T, Sezaki H, Tokuda H (2000) Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci 10(3):195–204. doi:S0928-0987(00)00076-2 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Feng X, Kestell P, Baguley BC, Paxton JW (2004) Determination of the investigational anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid and its acyl glucuronide in Caco-2 monolayers by liquid chromatography with fluorescence detection: application to transport studies. J Chromatogr B Analyt Technol Biomed Life Sci 809(1):87–97. doi:10.1016/j.jchromb.2004.06.009

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded through national funds from FCT–Fundação para a Ciência e a Tecnologia under the project CEQUIMED-PEst-OE/SAU/UI4040/2011, by FEDER funds through the COMPETE program under the project FCOMP-01-0124-FEDER-011057, FCOMP-01-0124-FEDER-015752, PTDC/SAU-FCF/70651/2006, and by U.Porto and Santander-Totta. The authors thank Ana Mafalda Paiva for helping in the synthesis of the pyranoxanthone. IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education and is partially supported by FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emília Sousa.

Additional information

Andreia Palmeira and Ana Sara Cordeiro contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sousa, E., Palmeira, A., Cordeiro, A.S. et al. Bioactive xanthones with effect on P-glycoprotein and prediction of intestinal absorption. Med Chem Res 22, 2115–2123 (2013). https://doi.org/10.1007/s00044-012-0203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0203-y

Keywords

Navigation