Skip to main content
Log in

Discovery of potent anticonvulsant ligands as dual NMDA and AMPA receptors antagonists by molecular modelling studies

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

To identify novel and potent anticonvulsant ligands, initially 2D and 3D-QSAR models were generated using a series some prop-2-eneamido and 1-acetyl-pyrazolin derivatives of aminobenzothiazole as anticonvulsants. Both the QSAR models yielded significant cross-validated q 2 values of 0.67 and 0.81 and predicted r 2 (pred_r 2) values of 0.66 and 0.83 for 2D and 3D, respectively. Continuing with series of aminobenzothiazole derivatives chemical feature based pharmacophore models with lowest RMSD value (0.1294 Å), consists of two aromatic carbon centre, one hydrogen bond acceptor and one hydrogen bond donor features was developed. To discover new hits, developed pharmacophore model was subjected to screen molecules from specs database. Screened hits which were showing good predicting activities according to both 2D and 3D-QSAR models were subjected to docking screening. Gly/NMDA and AMPA receptors are effective and validated anti-convulsant targets and used to report the binding affinity of screened hit on Gly/NMDA, AMPA receptors. A representative set of 14 compounds with effective biological activity and good binding affinity on both NMDA and AMPA receptors were screen out which may potential lead for anticonvulsant activity.

Graphical Abstract

Four point pharmacophore model of aminobenzothiazole derivatives was developed and screened out novel and potent anticonvulsant ligands using virtual screening technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ACD/Chemsketch 12.0, 2009

  • Amnerkar ND, Bhusari KP (2010) Synthesis, anticonvulsant activity and 3D-QSAR study of some prop-2-eneamido and 1-acetyl-pyrazolin derivatives of aminobenzothiazole. Eur J Med Chem 45:149–159

    Article  PubMed  CAS  Google Scholar 

  • Auberson YP (2001) Competitive AMPA antagonism: a novel mechanism for antiepileptic drugs. Drugs Fut 26:463–471

    Article  CAS  Google Scholar 

  • Baskin II, Tikhonova IG, Palyulin VA, Zefirov NS (2003) Selectivity fields: comparative molecular field analysis (CoMFA) of the glycine/NMDA and AMPA receptors. J Med Chem 46:4063–4069

    Article  PubMed  CAS  Google Scholar 

  • Brauner-Osborne H, Egebjerg J, Nielsen EO, Madsen U, Krogsgaard-Larsen P (2000) Ligands for glutamate receptors: design and therapeutic prospects. J Med Chem 43:2609–2645

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary P, Sharma PK, Sharma A, Varshney J (2010) Recent advances in pharmacological activity of benzothiazole derivatives. Int J Curr Pharm Res 2:5–11

    CAS  Google Scholar 

  • Clark M, Cramer RD III, Van ON (1989) Validation of the general purpose tripos 5.2 force field. J Comput Chem 10:982–1012

    Article  CAS  Google Scholar 

  • Colotta V, Catarzi D, Varano F, Cecchi L, Filacchioni G, Galli A, Costagli C (1997) Synthesis and biological evaluation of a series of quinazoline-2-carboxylic acids and quinazoline-2,4-diones as glycine-NMDA antagonists: a pharmacophore model based approach. Arch Pharm Pharm Med Chem 330:129–134

    Article  CAS  Google Scholar 

  • Danysz W, Parsons CG (1998) Glycine and N-methyl-d-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–664

    PubMed  CAS  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    PubMed  CAS  Google Scholar 

  • Donati D, Micheli F (2000) Recent development in glycine antagonists. Exp Opin Ther Patents 10:667–673

    Article  CAS  Google Scholar 

  • Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  • GLIDE (2006) Molecular Docking Tool of Schrodinger Inc., version 9.0, New York

  • Halgren TA (1996a) Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J Comp Chem 17:520–552

    Article  CAS  Google Scholar 

  • Halgren TA (1996b) Merck molecular force field. III. Molecular geometries and vibrational frequencies. J Comp Chem 17:553–586

    Article  CAS  Google Scholar 

  • Halgren TA (1996c) Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data and empirical rules. J Comp Chem 17:616–641

    Article  CAS  Google Scholar 

  • Halgren TA (1996d) Merck molecular force field: I. Basis, form, scope, parameterization and performance of MMFF94. J Comp Chem 17:490–519

    Article  CAS  Google Scholar 

  • Halgren TA (1999a) MMFF VI. MMFF94s option for energy minimization studies. J Comp Chem 20:720–729

    Article  CAS  Google Scholar 

  • Halgren TA (1999b) MMFF VII. characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J Comp Chem 20:730–748

    Article  CAS  Google Scholar 

  • Honore T, Lauridsen J, Krogsgaard-Larsen P (1982) The binding of [3H]AMPA, a structural analogue of glutamic acid, to rat brain membranes. J Neurochem 38:173–178

    Article  PubMed  CAS  Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531

    Article  PubMed  CAS  Google Scholar 

  • Kulagowski JJ (1996) Glycine-site NMDA receptor antagonists: an update. Exp Opin Ther Patents 6:1069–1079

    Article  CAS  Google Scholar 

  • Kulagowski JJ, Leeson PD (1995) Glycine-site NMDA receptor antagonists. Exp Opin Ther Patents 5:1061–1075

    Article  CAS  Google Scholar 

  • Lees GJ (2000) Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drugs 59:33–78

    Article  PubMed  CAS  Google Scholar 

  • Leeson PD, Iversen LL (1994) The glycine site on the NMDA receptor: structure-activity relationships and therapeutic potential. J Med Chem 37:4053–4067

    Article  PubMed  CAS  Google Scholar 

  • Leeson PD, Carling RW, Moore KW, Moseley AM, Smith JD, Stevenson G, Chan T, Baker R, Foster AC, Grimwood S, Kemp JA, Marshall GR, Hoogsteen K (1992) 4-Amido-2-carboxytetrahydroquinolines. Structure-activity relationships for antagonism at the glycine site of the NMDA receptor. J Med Chem 35:1954–1968

    Article  PubMed  CAS  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  • Micheli F, Di Fabio R, Capelli AM, Cugola A, Curcuruto O, Feriani A, Gastaldi P, Gaviraghi G, Marchioro C, Orlandi A, Pozzan A, Quaglia AM, Reggiani A, van Amsterdam F (1999) Cycloalkyl indole-2-carboxylates as useful tools for mapping the “north-eastern” region of the glycine binding site associated with the NMDA receptor. Arch Pharm Weinheim 332:73–80

    Article  PubMed  CAS  Google Scholar 

  • Moretti L, Pentikainen OT, Settimo L, Johnson MS (2004) Model structures of the N-methyl-d-aspartate receptor subunit NR1 explain the molecular recognition of agonist and antagonist ligands. J Struct Biol 145:205–215

    Article  PubMed  CAS  Google Scholar 

  • Pandeya SN, Yogeeswari P, Stables JP (2000) Synthesis and anticonvulsant activity of 4-bromophenyl substituted aryl semicarbazones. Eur J Med Chem 35:879–886

    Article  PubMed  CAS  Google Scholar 

  • Platt SR (2007) The role of glutamate in central nervous system health and disease—a review. Vet J 173:278–286

    Article  PubMed  CAS  Google Scholar 

  • Rajak H, Gupta AK, Verma A, Pawar RS, Kharya MD, Mishra P (2010) Synthesis of some novel semicarbazones with pharmacophoric elements for their anticonvulsant activity. Adv Pharmacol Toxicol 11:59–64

    CAS  Google Scholar 

  • Sarro GD, Siniscalchi A, Ferreri G, Gallelli L, Sarro AD (2000) NMDA and AMPA/kainate receptors are involved in the anticonvulsant activity of riluzole in DBA/2 mice. Euro J Pharm 408:25–34

    Article  Google Scholar 

  • Sarro GD, Gitto R, Russo E, Ibbadu GF, Barreca ML, Luca LD, Chimirri A (2005) AMPA receptor antagonists as potential anticonvulsant drugs. Curr Top Med Chem 5:31–42

    Article  PubMed  Google Scholar 

  • Shen M, LeTiran A, Xiao Y, Golbraikh A, Kohn H, Tropsha A (2002) Quantitative structure–activity relationship analysis of functionalized amino acid anticonvulsant agents using k nearest neighbor and simulated annealing PLS methods. J Med Chem 45:2811–2823

    Article  PubMed  CAS  Google Scholar 

  • Sridhar SK, Pandeya SN, Stables JP, Ramesh A (2002) Anticonvulsant activity of hydrazones, Schiff and Mannich bases of isatin derivatives. Eur J Pharm Sci 16:129–132

    Article  PubMed  CAS  Google Scholar 

  • Tikhonova IG, Baskin II, Palyulin VA, Zefirov NS (2003) CoMFA and homology-based models of the glycine binding site of N-methyl-d-aspartate receptor. J Med Chem 46:1609–1616

    Article  PubMed  CAS  Google Scholar 

  • VLife MDS 3.5 (2008) Molecular design suite. Vlife Sciences Technologies Pvt. Ltd., Pune. www.vlifesciences.com. Accessed 31 July 2010

  • Wei CX, Guan LP, Jia JH, Chai KY, Quan ZS (2009a) Synthesis of 2-substituted-6-(4H–1,2,4-triazol-4-yl)benzo[d]oxazoles as potential anticonvulsant agents. Arch Pharm Res 32:23–31

    Article  PubMed  CAS  Google Scholar 

  • Wei CX, Wu D, Sun ZG, Chai KY, Quan ZS (2009b) Synthesis of 6-(3-substituted-4H-1,2,4-triazol-4-yl)-2-phenylbenzo[d]oxazoles as potential anticonvulsant agents. Med Chem Res. doi:10.1007/s00044-009-9239-z. www.pdb.org

  • Zhang LQ, Guan LP, Wei CX, Deng XQ, Quan ZS (2010) Synthesis and anticonvulsant activity of some 7-alkoxy-2H–1,4-benzothiazin-3(4H)-ones and 7-Alkoxy-4H-[1, 2, 4]triazolo[4, 3-d]benzo[b][1, 4]thiazines. Chem Pharm Bull 58:326–331

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Tropsha A (2000) Novel variable selection quantitative structure–property relationship approach based on the k-nearest-neighbor principle. J Chem Inf Comput Sci 40:185–194

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge “Department of Science and Technology, Govt. of India” for providing funding to institute for Vlife MDS software. Authors like to acknowledge Principal of the institute for providing facilities to carry out the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh V. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, S.V., Bhadoriya, K.S., Bari, S.B. et al. Discovery of potent anticonvulsant ligands as dual NMDA and AMPA receptors antagonists by molecular modelling studies. Med Chem Res 21, 3465–3484 (2012). https://doi.org/10.1007/s00044-011-9889-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-011-9889-5

Keywords

Navigation