Skip to main content
Log in

Magnetic resonance assays of haloperidol in human serum albumin

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Haloperidol is a commonly used neuroleptic drug associated with a range of side effects. The aim of the study was to determine in vitro interaction of haloperidol with human serum albumin (HSA) by 19F magnetic resonance spectroscopy (MRS) at 9.4 Tesla (T). The practical measurement based on fluorine resonance has been proposed to determine drug level in HSA at 37°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Askal HF (1997) Spectrophotometric study of the charge transfer complexes of some pharmaceutical butyrophenones. Talanta 44(10):1749–1755

    Article  CAS  PubMed  Google Scholar 

  • Bustillo JR, Rowland LM, Jung R, Brooks WM, Qualls C, Hammond R, Hart B, Lauriello J (2008) Proton magnetic resonance spectroscopy during initial treatment with antipsychotic medication in schizophrenia. Neuropsychopharmacology 33(10):2456–2466

    Article  CAS  PubMed  Google Scholar 

  • Cesario V (2008) Acute extrapyramidal syndrome and neuroleptical malignant syndrome. A case report. Recenti Prog Med 99(3):146–148

    PubMed  Google Scholar 

  • Cohen BM, Lipinski JF, Pope HG, Harris PQ, Altesman RI (1980) Neuroleptic blood levels and therapeutic effect. Psychopharmacology 70(2):191–193

    Article  CAS  PubMed  Google Scholar 

  • Cohen BM, Tsuneizumi T, Baldessarini RJ, Campbell A, Babb SM (1992) Differences between antipsychotic drugs in persistence of brain levels and behavioral effects. Psychopharmacology (Berl) 108(3):338–344

    Article  CAS  Google Scholar 

  • Darwish IA (2005) Kinetic spectrophotometric methods for determination of trimetazidine dihydrochloride. Anal Chim Acta 551:222–231

    Article  CAS  Google Scholar 

  • Dugaiczyk A, Law SW, Dennison OE (1982) Nucleotide sequence and the encoded amino acids of human serum albumin mRNA. Proc Natl Acad Sci USA 79:71–75

    Article  CAS  PubMed  Google Scholar 

  • Durst P, Schuff N, Crocq MA, Mokrani MC, Macher JP (1990) Noninvasive in vivo detection of a fluorinated neuroleptic in the human brain by 19F nuclear magnetic resonance spectroscopy. Psychiatry Res 35:107–114

    Article  CAS  PubMed  Google Scholar 

  • Ellis DA, Martin JW, Muir DCG, Mabury A (2000) Development of an 19F NMR method for the analysis of fluorinated acids in environmental water samples. Anal Chem 72(4):726–731

    Article  CAS  PubMed  Google Scholar 

  • Goldman Z, Ebstein RP, Lerer B, Zohar J, Hermoni M, Belmaker RH (1981) Haloperidol blood levels during dosage reduction in chronic schizophrenic patients. Neuropsychobiology 7:281–284

    Article  CAS  PubMed  Google Scholar 

  • He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215

    Article  CAS  PubMed  Google Scholar 

  • Henry E, Moore CM, Kaufman MJ, Michelson D, Schmidt ME, Stoddard E, Vuckevic AJ, Berreira PJ, Cohen BM, Renshaw PF (2000) Brain kinetics of paroxetine and fluoxetine on the third day of placebo substitution: a fluorine MRS study. Am J Psychiatry 157:1506–1508

    Article  CAS  PubMed  Google Scholar 

  • Hsia JC, Kwan NH, Er SS, Wood DJ, Chance GW (1978) Development of a spin assay for reserve bilirubin loading capacity of human serum. Proc Natl Acad Sci USA 75(3):1542–1545

    Article  CAS  PubMed  Google Scholar 

  • Hubbard JW, Ganes D, Midha KK (1987) Prolonged pharmacologic activity of neuroleptic drugs. Arch Gen Psychiatry 44(1):99–100

    CAS  PubMed  Google Scholar 

  • Kishikawa N, Hamachi C, Imamura Y, Ohba Y, Nakashima K, Tagawa Y, Kuroda N (2006) Determination of haloperidol and reduced haloperidol in human serum by liquid chromatography after fluorescence labeling based on the Suzuki coupling reaction. Anal Bioanal Chem 386(3):719–724

    Article  CAS  PubMed  Google Scholar 

  • Kitamura K, Omran A, Takegami S, Tanaka R, Kitade T (2007) 19F NMR spectroscopic characterization of the interaction of niflumic acid with human serum albumin. Anal Bioanal Chem 387:2843–2848

    Article  CAS  PubMed  Google Scholar 

  • Komoroski RA, Newton JE, Karson C, Cardwell D, Sprigg J (1991) Detection of psychoactive drugs in vivo in humans using 19F NMR spectroscopy. Biol Psychiatry 29(7):711–714

    Article  CAS  PubMed  Google Scholar 

  • Kornhuber J, Weller M (1994) Neuroleptic malignant syndrome. Curr Opin Neurol 7(4):353–357

    Article  CAS  PubMed  Google Scholar 

  • Kragh-Hansen U (1990) Structure and ligand binding properties of human serum albumin. Dan Med Bull 37(1):57–84

    CAS  PubMed  Google Scholar 

  • Kudo S, Ishizaki T (1999) Pharmacokinetics of haloperidol: an update. Clin Pharmacokinet 37(6):435–456

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Tian J, Tian X, Hu Z, Chen X (2004) Interaction of isofraxidin with human serum albumin. Bioorg Med Chem 12(2):469–474

    Article  CAS  PubMed  Google Scholar 

  • Lyoo IK, Renshaw PF (2002) Magnetic resonance spectroscopy: current and future applications in psychiatric research. Biol Psychiatry 51:195–207

    Article  PubMed  Google Scholar 

  • Malet-Martino M, Gilard V, Desmoulin F, Martino R (2006) Fluorine nuclear magnetic resonance spectroscopy of human biofluids in the field of metabolic studies of anticancer and antifungal fluoropyrimidine drugs. Clin Chim Acta 366:61–73

    Article  CAS  PubMed  Google Scholar 

  • Martino R, Gilard V, Desmoulin F, Malet-Martino M (2006) Interest of fluorine-19-nuclear magnetic resonance spectroscopy in the detection, identification and quantification of metabolites of anticancer and antifungal fluoropyrimidine drugs in human biofluids. Chemotherapy 52(5):215–219

    Article  CAS  PubMed  Google Scholar 

  • Mason GF, Krystal JH (2006) MR spectroscopy: its potential role for drug development for the treatment of psychiatric diseases. NMR Biomed 19:690–701

    Article  CAS  PubMed  Google Scholar 

  • Miller JL, Ashford JW, Archer SM, Rudy AC, Wermeling DP (2008) Comparison of intranasal administration of haloperidol with intravenous and intramuscular administration: a pilot pharmacokinetic study. Pharmacotherapy 28(7):875–882

    Article  CAS  PubMed  Google Scholar 

  • Oldfield E, Lee RW, Meadows M, Dowd SR, Ho C (1980) Deuterium NMR of specifically deuterated fluorine spin probes. J Biol Chem 255:11652–11655

    CAS  PubMed  Google Scholar 

  • Ozkan SA, Uslu B, Aboul-Enein HY (2003) Analysis of pharmaceuticals and biological fluids using modern electroanalytical techniques. Crit Rev Anal Chem 33(3):155–181

    Article  Google Scholar 

  • Petitpas I, Battacharya AA, Twine S, East M, Curry S (2001) Crystal structure analysis of warfarin binding to human serum albumin. J Biol Chem 276(25):22804–22809

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Tsuchiya S (2006) Characterization of microenvironments of 2-(4′-hydroxyphenylazo)benzoic acid bound to bovine serum albumin by studying the solvent effects. J Pharm Sci 73:507–512

    Article  Google Scholar 

  • Shamsipur M, Shafiee-Dastgerdi L, Telebpour Z, Haghgoo S (2007) 19F NMR as a powerful technique for the assay of anti-psychotic drug haloperidol in human serum and pharmaceutical formulations. J Pharm Biomed Anal 43:1116–1121

    Article  CAS  PubMed  Google Scholar 

  • Skinner AL, Laurence JS (2008) High-field solution NMR spectroscopy as a tool for assessing protein interactions with small molecule ligands. J Pharm Sci 97(11):4670–4695

    Article  CAS  PubMed  Google Scholar 

  • Strauss WL, Dager SR (2001) Magnetization transfer of fluoxetine in the human brain using fluorine magnetic resonance spectroscopy. Biol Psychiatry 49:798–802

    Article  CAS  PubMed  Google Scholar 

  • Ulrich S, Wurthmann C, Brosz M, Meyer FP (1998) Te relationship between serum concentration and therapeutic effect of haloperidol in patients with acute schizophrenia. Clin Pharmacokinet 34:227–263

    Article  CAS  PubMed  Google Scholar 

  • Walter S, Bauer S, Roots I, Brockmöller J (1998) Quantification of the antipsychotics flupentixol and haloperidol in human serum by high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Biomed Sci Appl 720:231–237

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Bartusik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartusik, D., Tomanek, B., Blicharska, B. et al. Magnetic resonance assays of haloperidol in human serum albumin. Med Chem Res 20, 62–66 (2011). https://doi.org/10.1007/s00044-009-9287-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-009-9287-4

Keywords

Navigation